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Abstract—This paper presents the design of two controllers
namely, Direct Fuzzy Logic controller and Fuzzy Model Reference
Learning Control applied to a new aerial manipulation system
called ”Quadrotor-Manipulator System”. This system consists of
2-link manipulator connected to the bottom of a quadrotor. The
dynamic model of this system is derived taking into account the
effect of adding a payload to the manipulator. The performance of
the proposed controllers are compared with that of the previously
developed controller based on Feedback Linearization technique.
All controllers are tested regarding their ability to stabilize the
system and track desired trajectories under the effects of picking
and placing a payload as well as changing the system operating
region. Finally, the system equations of motion and the control
laws are simulated using MATLAB/SIMULINK. The simulation
results indicate the outstanding performance of the Fuzzy Model
Reference Learning Control.

Keywords—Aerial manipulation; Quadrotor-Manipulator; 2-
link manipulator; Feedback linearization; Demining devices; Fuzzy
logic control; Fuzzy model reference learning control

I. INTRODUCTION

In recent years, extensive research works on Unmanned
Aerial Vehicles (UAVs) have been done in [1]–[6]. UAVs offer
possibilities of speed and access to regions that are otherwise
inaccessible to ground robotic vehicles. Quadrotor vehicles
possess certain essential characteristics, which highlight their
potential for use in search and rescue applications.

An aerial manipulator was presented in [1]. This system
consists of a gripper that connected to the bottom of a
quadrotor. This design of the aerial manipulator enables the
quadrotor to interact with the environment. So, one can get
an entire new set of applications. First, allowing robots to
fly and perch on rods or beams increases the endurance of
their missions (e.g. for its battery charging). Second, the
ability to grasp and manipulate objects allows robots to access
payloads that cannot be manipulated by ground robots. With
this quadrotor system, a 4 DOF manipulator was established.

The authors introduced a new quadrotor manipulation
system in [7] that consists of two-link manipulator with
two revolute joints attached to the bottom of a quadrotor.
The two axes of the revolute joints of the manipulator
are perpendicular to each other. With this new system, the
capability of manipulating objects with arbitrary location and

orientation is achieved because the degrees of freedom of
the end effector (in our case, it is a gripper) are increased
from 4 to 6. On the other hand, the manipulator provides
sufficient distance between the quadrotor and the object
location. This system has a lot of potential applications such
as demining applications (e.g Improvised Explosive Device
Disposal), performing maintenance for a bridge or building,
hazardous material handling and removal. In this work [7], the
modelling of the system is proposed but without taking into
consideration the effect of carrying a payload by the gripper.
Also, a controller design based on the feedback linearization
technique was presented and tested to achieve stabilization and
trajectory tracking.

In this paper, the dynamic model of the quadrotor
manipulation system is modified to study the effect of picking
and placing the payload. Then, two control techniques are
designed and tested in order to stabilize the system and
track a desired trajectory under the effect of adding and
releasing a payload as well as under the effect of changing the
system operating region. These controllers are Direct Fuzzy
Logic Control (DFLC) and adaptive fuzzy control based on
Fuzzy Model Reference Learning Control (FMRLC). Also
their performance are compared to that based on Feedback
Linearization (FBL) control technique.

This paper is organized as follows. The modeling of the
system is described in section II. Section III introduces the
control strategy of the system, while DFLC and FMRLC are
presented in sections IV and V respectively. The simulation
results using MATLAB/SIMULINK are presented in section
VI. Finally, the main contributions are concluded in section
VII.

II. MODIFIED MODELING OF THE SYSTEM

3D CAD model of the proposed system is shown in Fig.
1. The system consists of two-link manipulator attached to the
bottom of a quadrotor. The manipulator has two revolute joints.
The axis of joint 1 (z0 in Fig. 2) is parallel to one in-plane
axis of the quadrotor (x in Fig. 2) and perpendicular to the axis
of joint 2. Also, the axis of joint 2 (z1 in Fig. 2) is parallel
to the other in-plane axis of the quadrotor (y in Fig. 2) at
home (extended) configuration. Therefore the end effector can
perform any arbitrary position and orientation. So, a 6 DOF
aerial manipulator is obtained.



Fig. 1. 3D CAD Model of the New Quadrotor Manipulation System

Fig. 2. Schematic of Quadrotor Manipulation System Frames

Derivation of the equations of motion for the quadrotor
manipulation system is presented in details in [7].

A. System Kinematics

Fig. 2 presents a sketch of the quadrotor-manipulator
system with the relevant frames. The orientation of the
quadrotor is represented through Euler Angles. A rigid body
is completely described by its position and orientation with
respect to a reference frame {E}, OI -X Y Z, that is earth-
fixed. Let

RBI =
[

C(ψ)C(θ) S(ψ)C(θ) −S(θ)
−S(ψ)C(φ) + S(ψ)S(θ)C(ψ) C(ψ)C(φ) + S(ψ)S(θ)S(φ) C(θ)S(φ)
S(ψ)S(φ) + C(ψ)S(θ)C(φ) −C(ψ)S(φ) + S(ψ)S(θ)C(φ) C(θ)C(φ)

]
(1)

be the rotation matrix expressing the transformation from the
inertial frame to the body-fixed frame{B}, OB-x y z, where φ,
θ, and ψ are Euler angles. Note that C(.) and S(.) in (1) are
short notations for cos(.) and sin(.). Let us assume a small
angles of φ and θ, then the corresponding time derivatives
of Euler angles are equal to the body-fixed angular velocity
components.

In Fig. 2 the frames satisfy the Denavit-Hartenberg
convention [8]. The position and orientation of the end
effector relative to the body-fixed frame is easily obtained by
multiplying appropriate homogeneous transformation matrices
[7], [8].

B. System Dynamics

Applying Newton Euler algorithm [9] to the manipulator
considering that the link (with length L0) that is fixed to
the quadrotor is the base link, one can get the equations of
motion of the manipulator as well as the interaction forces
and moments between the manipulator and the quadrotor. The
effect of adding a payload to the manipulator will appear in the
parameters of its end link, link 2, (e.g. mass, center of gravity,
and inertia matrix). Therefore, the payload will change the
overall system dynamics.

The equations of motion of the manipulator are:

M1θ̈1 = Tm1
+N1 (2)

M2θ̈2 = Tm2
+N2 (3)

where, Tm1
and Tm2

are the manipulator actuators’ torques.
M1, M2, N1, and N2 are nonlinear terms and they are
functions in the system states as described in [7].

The Newton Euler method are used to find the equations
of motion of the quadrotor after adding the forces/moments
applied by the manipulator are:

mẌ = T (C(ψ)S(θ)C(φ) + S(ψ)S(φ)) + F Im,qx (4)

mŸ = T (S(ψ)S(θ)C(φ)− C(ψ)S(φ)) + F Im,qy (5)

mZ̈ = −mg + TC(θ)C(φ) + F Im,qz (6)

Ixφ̈ = θ̇φ̇(Iy − Iz)− Ir θ̇Ω + Ta1 +MB
m,qφ

(7)

Iy θ̈ = ψ̇φ̇(Iz − Ix) + Irφ̇Ω + Ta2 +MB
m,qθ

(8)

Izψ̈ = θ̇φ̇(Ix − Iy) + Ta3 +MB
m,qψ

(9)

where F Im,qx , F Im,qy , and F Im,qz are the interaction forces from
the manipulator to the quadrotor in X ,Y , and Z directions
defined in the inertial frame and MB

m,qφ
, MB

m,qθ
, and MB

m,qψ
are the interaction moments from the manipulator to the
quadrotor around X , Y , and Z directions defined in the inertial
frame.

The variables in (4-9) are defined as follows: T is the total
thrust applied to the quadrotor from all four rotors, and is given
by:

T =

4∑
i=1

(Fj) =

4∑
i=1

(bΩ2
j ) (10)

where Fj is the thrust force from rotor j, Ωj is the angular
velocity of rotor j and b is the thrust coefficient. Ta1 , Ta2 , and
Ta3 are the three input moments about the three body axes,
and are given as:

Ta1 = d(F4 − F2) (11)

Ta2 = d(F3 − F1) (12)

Ta3 = Kd(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4) (13)



Fig. 3. Block Diagram of the Control System

d is the distance between the quadrotor center of mass and the
rotation axis of the propeller and Kd is the drag coefficient.

Ω = Ω1 − Ω2 + Ω3 − Ω4 (14)

Ir is the rotor inertia. If is the inertia matrix of the vehicle
around its body-frame assuming that the vehicle is symmetric
about x-, y- and z-axis.

From the equations of the translation dynamics (4-6), one
can extract the expressions of the high-order nonholonmic
constraints:

sin(φ) =
(Ẍ − F Im,qx) sin(ψ)− (Ÿ − F Im,qy ) cos(ψ)√

(Ẍ − F Im,qx)2 + (Ÿ − F Im,qy )2 + (Z̈ + g − F Im,qz )2
(15)

tan(θ) =
(Ẍ − F Im,qx) cos(ψ) + (Ÿ − F Im,qy ) sin(ψ)

Z̈ + g − F Im,qz
(16)

where F Im,qx , F Im,qy , and F Im,qz are functions of the system
states and there derivatives.

III. SYSTEM CONTROLLER DESIGN

Quadrotor is an under-actuated system, because it has four
inputs (angular velocities of its four rotors) and six variables
to be controlled. By observing the operation of the quadrotor,
one can find that the movement in x- direction is based on the
pitch rotation, θ. Also the movement in y- direction is based
on the roll rotation, φ. Therefore; motion along X- and Y -axes
will be controlled through controlling θ and φ.

Fig. 3 presents a block diagram of the proposed control
system. The control design criteria are achieving system
stability and a zero trajectory tracking error under the effect
of:

• Picking and placing a payload.

• Changing the operating region of the system.

The matrix G of the control mixer is used to transform
the assigned thrust force and moments of the quadrotor (the
control signals) from the controller block into assigned angular
velocities of the four rotors. This matrix can be derived from
(10-13) as in [7].

Feedback linearization based PID controller is designed
and tested regarding tracking desired trajectories of the
quadrotor-manipulator system in [7]. Fig. 4 presents the block
diagram of this control techniques.

Fig. 4. Details of the Controller Block in Case of Feedback Linearization

In Fig. 4, the nonholonmic constraints are used to
determine the desired trajectories of θ and φ from the desired
trajectories of X , Y , Z, ψ, θ1, and θ2 and their derivatives.
Then feedback linearization controllers are used to obtain a
zero tracking errors for θ, φ, Z, ψ, θ1 and θ2. Putting subscript
d to all variables in (15 and 16), then φd and θd can be
obtained. The details of this controller design are presented
in [7].

IV. DIRECT FUZZY LOGIC CONTROL

Recently, fuzzy logic control [10], [11] has become an
alternative to conventional control algorithms to deal with
complex processes and combine the advantages of classical
controllers and human operator experience.

An intelligent controller for a quadrotor was designed and
presented in [12]. In this work, a modification of this technique
is done and used to control the quadrotor-manipulator system
to achieve the required objectives mentioned in Section III .

In Fig. 5, three fuzzy controllers are designed to control
the quadrotor’s roll (φ), pitch (θ) and yaw(ψ) angles, denoted
by FLCφ, FLCθ, and FLCψ , respectively, with the former
two serving as attitude stabilizers. Three fuzzy controllers,
FLCx, FLCy and FLCz , are further designed to control the
quadrotor’s position. Also two fuzzy controllers FLCθ1 and
FLCθ2 are designed to control the two joints’ angles of the
manipulator.

Fig. 5. Details of the Controller Block in Case of DFLC

All eight fuzzy controllers have similar inputs that are:



• The error e = (̃.) = (.)d−(.) , which is the difference
between the desired signal (.)d and its actual value (.).
This input is normalized to the interval [-1, +1].

• The error rate c, which is normalized to the interval
[-3, +3].

In this control strategy, the desired pitch and roll angles, θd
and φd , are not explicitly provided to the controller. Instead,
they are continuously calculated by controllers FLCx and
FLCy in such a way that they stabilize the quadrotor’s attitude.
First, we convert the error and its rate of X and Y that is
defined in the inertial frame into their corresponding values
defined in the body frame. This conversion is done using the
transformation matrix defined in (1) assuming small angles (φ
and θ) approximation as following:

˙̃x = ˙̃X cos(ψ) + ˙̃Y sin(ψ) (17)

˙̃y = ˙̃X sin(ψ)− ˙̃Y cos(ψ) (18)

The input and output membership functions of each FLC
are tuned and chosen to be three symmetric triangular shaped
functions with the linguistic values N (Negative), Z (Zero), and
P (Positive). Also the input and output scaling factors for the
error, change of error, and fuzzy output (Kei , Kci , and Kui ;
i = x, y, z, φ, θ, ψ, θ1, θ2) of each FLC are tuned such that
required performance is obtained.

The rule base of each FLC block is the same and is
designed to provide a PD-like fuzzy controller. A Mamdani
fuzzy inference method is used with a min-max operator
for the aggregation and the center of gravity method for
defuzzification.

There is a need to add an Offset value to the control signal
from the FLCZ (T ) in order to counter balance the weight
of the quadrotor. This value is equal to the total weight of the
quadrotor.

It is important to note that this control scheme does not
depend on the kinematic and dynamic equations derived in
Section II . The fuzzy controllers are designed in light of the
knowledge acquired on the quadrotor’s behavior and from its
dynamic model.

V. ADAPTIVE FUZZY LOGIC CONTROL

In this section, an adaptive fuzzy logic control based
on ”fuzzy model reference learning controller”is designed
to control the quadrotor-manipulator system. This control
technique is presented in details in [10], [13], [14].

The main drawback of fuzzy controllers is the large amount
of parameters to be tuned. Also, the direct FLC designed in
section IV needs to retune its parameters in each operation
region. Moreover, the fuzzy controller constructed for the
nominal plant may later perform inadequately if significant
and unpredictable plant parameter variations, or environmental
disturbances occur [13].

In this work, a learning control algorithm employs a
reference model to provide closed-loop performance feedback
for tuning a fuzzy controller’s knowledge-base. These
performance objectives are characterized via the reference
model.

The control system design is the same as in Fig. 5 by
replacing each of the FLCz , FLCφ, FLCθ, FLCψ , FLCθ1
and FLCθ2 block with the block shown in Fig. 6. However,
there is no need for the offset value that is used in Fig. 5
because the FMRLC can compensate the quadrotor weight.
The blocks of FLCx and FLCy are still the same because
there is no need for adaptation here, since these blocks are used
to map the relation between the error in X and Y directions
into the required roll and pitch motions based on the operation
of the quadrotor.

In the following subsections, the individual blocks in Fig.
6 will be described briefly.

Fig. 6. Functional Block Diagram for the FMRLC

A. The Fuzzy Controller

The plant in Fig. 6 has output y (Z, φ, θ, ψ, θ1, or θ2) and
an input u. Scaling gains ge, gc, and gu for the error, e, change
in error, c, and controller output, u, are used respectively, such
that the universe of discourse of all inputs and outputs are the
same and equal to [-1, 1].

The inputs membership functions are chosen to be 11
symmetric triangular-shaped functions. The initial rule base
elements are set to zeros. The output membership functions are
symmetric triangular-shaped functions and all centered at zero.
They are what the FMRLC will automatically tune. Mamdani
fuzzy inference method is used with a min-max operator for
the aggregation. The standard center of gravity is used as a
defuzzification technique.

B. The Reference Model

The reference model is used to quantify the desired
performance. A 1st order model is chosen as the reference
model:

ym(s)

r(s)
=

1

τciS + 1
(19)

where τci (i = z, φ, θ, ψ, θ1, and θ2) is the time constant of
the reference model.

C. The Learning Mechanism

The learning mechanism tunes the rule-base of the direct
fuzzy controller so that the closed-loop system behaves like
the reference model. The learning mechanism consists of two
parts, fuzzy inverse model and knowledge-base modifier.



1) The Fuzzy Inverse Model: The fuzzy inverse model
performs the function of mapping ye (representing the
deviation from the desired behavior), to changes in the process
inputs p that are necessary to force ye to zero. The fuzzy
inverse model shown in Fig. 6 contains scaling gains, gye ,
gyc , and gp. Also, it has 11 symmetric triangular-shaped
membership functions for the input and output universes of
discourse. Mamdani fuzzy inference method is used with a
min-max operator for the aggregation and the standard center
of gravity is used as a defuzzification technique. The rule base
of the fuzzy inverse model is shown in Table that is can be
got from [13].

2) The Knowledge-Base Modifier: Given the information
about the necessary changes in the input, which are represented
by p, to force the error ye to zero, the knowledge-base
modifier changes the rule-base of the fuzzy controller so that
the previously applied control action will be modified by the
amount p.

D. Auto-Tuning Mechanism

In the standard FMRLC design, the system performance is
degraded with variation in the desired input value. An auto-
tuning mechanism is used in [14] to tune ge and gc gains online
as following: Let the maximum of each fuzzy controller input
(e, c) over a time interval of the last Ta seconds be denoted
by maxTa{e} and maxTa{c}. Then this maximum value is
defined as the gain of each input e and c so that,

ge =
1

maxTa{e}
, and gc =

1

maxTa{c}
(20)

The learning mechanism must be operated at a higher rate than
the auto-tuning mechanism.

VI. SIMULATION RESULTS

The system equations of motions and the control
laws of the three control techniques are simulated using
MATLAB/SIMULINK program. Parameters of the system are
listed in [7]. Quintic Polynomial Trajectories [8] are used as the
reference trajectories for X , Y , Z, ψ, θ1, and θ2. Those types
of trajectories have sinusoidal acceleration which is better in
order to avoid vibration modes. All trajectories have the same
characteristics, such that the initial position = 0, the final
position = 1, except ψ trajectory with final position = 0, the
initial and final velocities and accelerations equal to zero, and
the final time is 10 s and the simulation time is 60 s. The
controller parameters of the feedback linearization, DFLC, and
FMRLC controllers are given in [7], Table I, and Table II
respectively. Those parameters are tuned to get the required
system performance.

The three controller are tested to stabilize and track the
desired trajectories under the effect of picking a payload of
value 100 g at instant 20 s and placing it at instant 40 s. The
simulation results are presented in Fig. 7. The performance
of the controllers in the directions of X , Y , and Z is the
same and θ1 and θ2 is the same, so only the results of X , ψ,
and θ2 are presented. These results show that the controller
design based on feedback linearization can track the desired
trajectories before picking the payload but at the instant of
picking and then holding the payload, it fails to track the

TABLE I. DFLC PARAMETERS

Par. Value Par. Value
[KexKcxKux ] [.0035, .01, 35] [KeyKcyKuy ] [.0035, .01, 35]

[KezKczKuz ] [.1, .5, 100] [KeψKcψKuψ ] [.05, .1, 4]

[KeφKcφKuφ ] [.1, .1, 14] [Keθ1
Kcθ1

Kuθ1
] [.05, .05, 9]

[KeθKcθKuθ ] [.1, .1, 14] [ [Keθ2
Kcθ2

Kuθ2
] [.05, .05, 9]

TABLE II. FMRLC PARAMETERS

Par./Val. Z φ θ ψ θ1 θ2
ge−initial 1/5 2 2 1 1/6 1/6
gc−initial 1/10 1 1 100 1 1

gu 45.9 2.9 2.9 0.19 0.94 0.94
gye 1/60 1/3 1/3 1 1/12.5 1/6.2
gyc 1/60 1/3 1/3 10 1/12.5 1/6.2
gp 0.45 0.029 0.029 0.0038 0.0047 0.0188
τc(s) 1.5 0.001 0.001 0.01 0.1 0.1
Ta(s) 0.1 0.05 0.05 0.05 0.05 0.05

desired trajectories and the system becomes unstable even if
the payload is released. Both DFLC and FMRLC are able to
track the desired trajectories before, during picking, holding,
and placing the payload but the DFLC produces a steady
state error during the period of holding the payload. DFLC
suffers from the necessity of calibrating and determining the
offset value which is affected by payload value and cannot be
estimated accurately.

Study of the effect of changing the operating region is
done as following: The operating point for X , Y , and Z is
changed from 0 m to 60 m, also for θ1 and θ2 is changed
from 0 to π rad, and finally, ψ is kept at 0 rad. The simulation
results presented in Fig. 8 show that the FMRLC succeeds
with satisfied accuracy and the DFLC fails to track because it
need to retune its scaling factors.

VII. CONCLUSION

A new aerial manipulation system called
”Quadrotor–Manipulator System” was briefly described. Three
control techniques were presented, feedback linearization
based PID control, DFLC, and FMRLC. These controllers are
tested to provide system stability and trajectory tracking under
the effect of picking and placing a payload and the effect of
changing the operating region. Simulation results shows that
the feedback linearization technique fails to ensure system
stability. In contrast, both DFLC and FMRLC can provide
the system stability and good trajectory tracking under the
effect of the payload but unlike FMRLC, the DFLC provides
a steady state error. A comparison study is done between
DFLC and FMRLC when changing the operating region and
the results show the success of FMRLC and the failure of
DFLC which causes system instability.
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(a) X

(b) ψ

(c) θ2

Fig. 7. Simulation Results for FBL Controller, DFLC, and FMRLC Under
Effect of Adding/Releasing Payload: a) X , b) ψ, and c) θ2.
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