
 

 
 

 

 

Abstract— This paper describes a methodology to identify all 
the parameters of a quadrotor system including the structure 
parameters and rotor assembly parameters. A CAD model is 
developed using SOLIDWORKS to calculate the mass moment 
of inertia and all the missing geometrical parameters. A three 
simple test rigs are built and used to identify the relationship 
between the motor input Pulse Width Modulation (PWM) 
signal and the angular velocity, the thrust force, and drag 
moment of the rotors. A simple algorithm is implemented to an 
inertial measurement unit (IMU) for estimating the attitude 
and altitude of the quadrotor. Experimental set up is built to 
verify and test the accuracy of these proposed techniques. A 
controller is designed based on the feedback linearization 
method such that the quadrotor attitude can be stabilized. 
Finally, the experimental results show the effectiveness of the 
proposed techniques and the controller design.  
 

Keywords-quadrotor; parameter identification; inertial 
measurement unit; feedback linearization; thrust and drag 
moment identification 

I. INTRODUCTION 

Quadrotor is one of the unmanned aerial vehicles (UAVs) 
that possess certain essential characteristics. Their potential is 
highlighted in search, surveillance and rescue applications. 
Characteristics that provides a clear advantage over other 
UAVs is their Vertical Take Off and Landing (VTOL), 
hovering capability, ability to make slow precise movements, 
impressive  maneuverability, traversing  through  an 
environment with many obstacles, and landing in small areas 
[1, 2, 3, 4, 5]. Quadrotor model based control is mainly 
depending on the dynamic behavior and the parameters of 
quadrotor. Researchers have studied the quadrotor's dynamics 
and presented models based on Newton-Euler and Lagrangian 
methods [3, 6]. However, the parameters of the quadrotor's 
dynamic model are essential for robust control. Consequently, 
parameters identification for quadrotor is inevitable. The 
general idea behind identification is to discover the physical 
system properties by observing quadrotor inputs and outputs. 

Quadrotor research topic involves many areas such as 
structure parameters identification, rotor assembly 
identification, estimation algorithms of the unmeasured 
system states using an IMU, control synthesis and new design 
and application of quadrotor [7, 8]. Quadrotor structure 
identification is used to define the terms of mass, mass 
moment of inertia, and the rotor inertia. Two methods for 
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structure identification are commonly used [3, 4, 9, 10, 11]. 
First one calculates these parameters using the principal 
equations for the mass moment of inertia, but this method is 
too difficult and not accurate for complex shapes. The second 
method utilizes online measurements with the identification 
algorithms to estimate these parameters. These algorithms 
require high computational.  

Rotor assembly suffers from the lack of data. Few 
manufacturers support the research with the technical data for 
the quadrotor system [1, 4, 5, 12]. The other way is to 
measure the rotor assembly parameters by using wind tunnel 
identification [13]. This method needs complicated 
measurements with special instruments. Researchers in [12, 
14, 15, 16, 17] present the estimation of the attitude and 
altitude using IMUs. They present algorithms that need a high 
computational time, so this cannot be implemented onboard 
microcontroller units. A simple algorithm is presented in [18] 
to estimate the roll, and pitch angle only.    

In this research a method is proposed to identify all the 
quadrotor's structure parameters with simple and more 
accurate method. For the rotor parameters, a method is 
introduced that can be implemented easily without any extra 
instrumentations or manufacturer's data. Finally for the 
measurements, a low-cost small-size IMU is used. An 
algorithm is executed onboard to estimate the attitude and 
altitude of the quadrotor. Our proposed method is tested and 
verified experimentally. Moreover, a controller is designed 
based on feedback linearization technique that utilizes the 
identified parameters in order to stabilize the attitude of the 
quadrotor.   

The paper is organized as following: Section II presents 
the quadrotor dynamic model. Section III presents the 
quadrotor structure and the estimation of its parameters. 
Section IV presents an experimental method for determining 
thrust and drag coefficients. Section V presents an IMU 
sensor fusion and simple algorithm for estimating the attitude 
and altitude for the quadrotor. Section VI presents controller 
design that used to verify the identified parameters. Finally 
conclusion remarks are shown in Section VII. 

II. DYNAMIC MODELING 

The quadrotor dynamic model is presented in this section 
to emphasis the importance of the quadrotor parameters 
identification and to be used as a basis for the control 
synthesis presented latter. Fig.1 presents the corresponding 
torque, force, and angular velocity of each propeller. There 
are some assumptions for the dynamic model. First the 
quadrotor structure is symmetrical and rigid. Second the
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