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Abstract: Recently, the Aerial Manipulation System becomes very attractive for a wide range of applications due to its
unique features. However, control of such system is quite challenging. One of the critical challenge is that this system is
very susceptible to actuators’ faults. In this paper, a Passive Fault Tolerant Control System is proposed to address this issue
with robust and optimal performance. The robustness is achieved using a linear Disturbance Observer (DOb) loop. Based
on the linearization capability of DOb, a standard Model Predictive Control (MPC) is then used and the resulting control
scheme is characterized by both a low computational load and optimal actuators’ efforts with respect to conventional
nonlinear robust solutions. This controller is tested to achieve the tracking of a point-to-point task space references
under the effect of actuators’ faults, picking/releasing a payload, changing the operating region, and measurement noise.
Efficacy of the proposed technique is verified via numerical simulations.
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1. INTRODUCTION
Recently, aerial manipulators have much interest be-

cause they have several vital applications in the places
which are not accessible by ground robots. Due to the
superior mobility of quadrotors, they are utilized for mo-
bile manipulation. Several researches have been intro-
duced in the area of aerial manipulation [1–4]. How-
ever, the previous introduced systems in the literature that
use a gripper suffer from the limited allowable DOF of
the end-effector. The other systems have a manipulator
with either two DOF but in certain topology that disables
the end-effector to track arbitrary 6-DOF trajectory, or
more than two DOF which decreases greatly the possi-
ble payload carried by the system. Moreover, the con-
trol schemes that were presented in the literature for such
robots are based on nonlinear controllers which are very
complicated and have very high computational cost.

In [5], we propose a new aerial manipulation system
that consists of a 2-link manipulator attached to the bot-
tom of a quadrotor. This new system presents a solution
for the limitations found in the current quadrotor manip-
ulation systems. Firstly, our proposed aerial manipulator
has the capability of manipulating the objects with arbi-
trary location and orientation because it posses 6-DOF.
Secondly, it is based on a minimum manipulator weight
for aerial manipulation (2-DOF manipulator). Thirdly,
the manipulator provides sufficient and controlled dis-
tance between quadrotor and object location.

There are several issues when working with the aerial
manipulation systems. The first one is achieving the po-
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sition holding. In order to achieve this task, a robust con-
trol must be implemented such that it can cope up with the
uncertainties and disturbances, faulty situations of the ac-
tuators, payload changes, operation region changes, and
measurement noise. The second issue with this system
is the limitations of the actuators (thrusters and manipu-
lator motors) which may degrade the performance if it is
not considered during controller design. The third issue
is the speed of the controller response which must be fast
enough to be suitable with the high speed dynamics of
the flying robot.

The robustness and optimal performance issues are
solved in [6], in which, we propose a DOb based con-
trol technique to achieve the required robustness. The
DOb estimate the nonlinear terms and uncertainties then
compensates them such that the robotic system acts like
a multi-SISO linear systems. Therefore, it is possible to
rely on the standard MPC methodology to design the con-
troller of the outer loop such that the system performance
can be adjusted to achieve desired tracking accuracy and
speed, and actuators constraints with low computational
load and optimal control effort.

The Fault Tolerant Control System (FTCS) is a con-
trol system with the ability to tolerate faults automati-
cally and to achieve the desired performance under the
fault conditions in the system components (e.g. Actu-
ators and Sensors). There are two different types of
FTCS; one of them is the Passive Fault Control System
(PFTCS), and the other is the Active Fault Control Sys-
tem (AFTCS). PFTCS is designed based on a fixed con-
troller which should be robust enough to withstand the
possible malfunctions during system operation. AFTCS



is designed based on a reconfigurable controller with a
Fault Detection and Diagnosis scheme to provide on-line
system monitoring. Unlike the AFTCS, PFTCS does not
require a reconfiguration control law and a Fault Detec-
tion and Diagnosis scheme. In this paper, the passive fault
tolerant capability of the MPC/DOb approach against the
actuators’ faults is investigated.

This paper is organized as follows: In section 2, the
considered robotic system is described, and kinematic
and dynamic analysis are reviewed. The control problem
to solve is formulated and described in section 3. In sec-
tion 4, simulation results using MATLAB/SIMULINK
are presented. Finally, the main contributions are con-
cluded in section 5.

2. SYSTEM MODELING
Design and modeling of the quadrotor manipulation

system are presented in details in [5]. The system consists
mainly of two parts; the quadrotor and the manipulator.
3D CAD model of it is shown in Fig. 1. Fig. 2 presents a

Fig. 1: 3D CAD model of the Quadrotor Manipulation
System

sketch of such system with the relevant frames which in-
dicates the unique topology that permits the end-effector
to achieve arbitrary pose. The frames satisfy the Denavit-
Hartenberg (DH) convention. The quadrotor components

Fig. 2: Schematic diagram of Quadrotor Manipulation
System with relevant frames

are selected such that it can carry a payload equals 500g
(larger than the total arm weight and the maximum pay-
load). Asctec pelican quadrotor is used as the quadrotor

platform. The maximum thrust force for each rotor is 8N
as obtained from an identification process.

The arm components are designed, selected, pur-
chased and assembled such that the total weight of the
arm is 200g, has maximum reach in the range between
22cm to 25cm, and can carry a payload of 200g. Three
DC motors, (HS-422 (Max torque = 0.4N.m) for grip-
per, HS-5485HB (Max torque = 0.7N.m) for joint 1, and
HS-422 (Max torque = 0.4N.m) for joint 2), are used.

Each rotor j has angular velocity Ωj and it produces
thrust force Fj and drag moment Mj which are given by

Fj = KfjΩ
2
j , (1)

Mj = KmjΩ
2
j , (2)

where Kfj and Kmj are the thrust and drag coefficients.
These coefficients will be utilized later to simulate the
effects of the actuators’ faults.

Let Σb, Ob- xb yb zb, denotes the vehicle body-fixed
reference frame with origin at the quadrotor center of
mass, see Fig. 2. Its position with respect to the world-
fixed inertial reference frame, Σ, O- x y z, is given by
the (3× 1) vector pb = [x, y, z]T , while its orientation is
represented by Φb=[ψ, θ, φ]T , and is given by a rotation
matrix Rb.

Let us consider the frame Σe, O2- x2 y2 z2, attached
to the end-effector of the manipulator, see Fig. 2. Thus,
the position of Σe with respect to Σ is given by

pe = pb +Rbp
b
eb, (3)

where the vector pbeb describes the position of Σe with
respect to Σb expressed in Σb. The orientation of Σe can
be defined by the rotation matrix

Re = RbR
b
e, (4)

where Rbe describes the orientation of Σe w.r.t Σb.
The dynamical model of the quadrotor-manipulator

system can be written as follows:

M(q)q̈ +C(q, q̇)q̇ +G(q) + dex = τ, τ = Bu, (5)

where q = [x, y, z, ψ, θ, φ, θ1, θ2]T ∈ R8 is the gener-
alized coordinates, M ∈ R8×8 represents the symmet-
ric and positive definite inertia matrix of the combined
system, C ∈ R8 is the matrix of Coriolis and centrifu-
gal terms, G ∈ R8 is the vector of gravity terms, dex
∈ R8 is vector of the external disturbances, τ ∈ R8×8

is vector of the generalized input torques/forces, u =
[F1, F2, F3, F4, τm1

, τm2
]T ∈ R6 is vector of the actua-

tors’ inputs, B = HN ∈ R8×6 is the input matrix which
is used to generate the body forces and moments from the
actuators’ inputs. N ∈ R8×6 is given by

N =



0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 0 0
γ1 −γ2 γ3 −γ4 0 0
−d 0 d 0 0 0
0 −d 0 d 0 0
0 0 0 0 Kτ1 0
0 0 0 0 0 Kτ2


, (6)



where γj = Kmj/Kfj , Kτ1 and Kτ2 are the motor’s
constants of joints 1 and 2, respectively, and H ∈ R8×8

transforms body input forces to be expressed in Σ and is
given by

H =

 Rb O3 O2

O3 TTb Rb O2

O2x3 O2x3 I2

 . (7)

3. CONTROLLER DESIGN
This section presents the proposed motion control

strategy. In this control strategy, the system nonlineari-
ties, uncertainties, external disturbances, τdis, are treated
as disturbances which will be estimated, τ̂dis, and can-
celed by the DOb in the inner loop. The system can be
now considered as linear SISO plants and thus the MPC
is used in the external loop to achieved the objective per-
formance for the system by producing τdes.

3.1. Disturbance Observer Loop
A block diagram of the DOb inner loop is shown in

Fig. 3. In this figure, Mn ∈ R8×8 is the system nomi-
nal inertia matrix, τ and τdes are the robot and desired
inputs, respectively, P = diag([g1, ..., gi, ..., g8]) with
gi is the bandwidth of the ith variable of q, Q(s) =
diag([ g1

s+g1
, ..., gi

s+gi
, ..., g8

s+g8
]) ∈ R8×8 is the matrix

of the low pass filter of DOb. It is a well known
fact that a DOb requires precise velocity measurement.
Therefore, the velocity is estimated by using a low
pass filter, Qv(s) = diag([

gv1
s+gv1

, ...,
gvi
s+gvi

, ...,
gv8
s+gv8

])

∈ R8×8, and with cut-off frequency of Pv =
diag([gv1 , ..., gvi , ..., gv8 ]) (i.e. precise velocity measure-
ment is achieved in a predetermined bandwidth). τdis

represents the system disturbances including the Coriolis,
centrifugal and gravitational terms, and τ̂dis represents
the system estimated disturbances.

The system disturbance τdis can be assumed as:

τdis = (M(q)−Mn)q̈ + τd,

τd = C(q, q̇)q̇ +G(q) + dex.
(8)

Substituting from (8), then (5) can be rewritten as

Mnq̈ + τdis = τ. (9)

Now if the disturbance observer performs optimally, that
is τ̂dis = τdis, the dynamics from the DOb loop input τdes

to the output of the robot manipulator is given by

Mnq̈ = τdes. (10)

Since Mn is a diagonal matrix, the system can be treated
as multi-decoupled linear SISO systems as following

Mnii q̈i = τdesi , (11)

or simply in the acceleration space as

q̈i = q̈desi . (12)

3.2. Model Predictive Control
By virtue of the rejection of the nonlinearities, distur-

bances, uncertainties, and noise through the use of DOb
internal loop, the MPC controller have not to consider un-
certainties and can designed based on the nominal 8 SISO
decoupled models of the system (12) with satisfying the
actuators constraints, umin ≤ u ≤ umax.

The SISO model of the system is given by

ẋp(t) = Apxp(t) +Bpumpc(t), (13)
qi(t) = Cpxp(t),

where xp =

[
x1
x2

]
=

[
q̇i
qi

]
, Ap =

[
0 0
1 0

]
, Bp =

[
1
0

]
,

Cp =
[
0 1

]
, and umpc(t) is the output of the MPC

which will be q̈des. The general design philosophy of
model predictive control is to compute a trajectory of a
future manipulated variable umpc(t) to optimize the fu-
ture behavior of the plant output qi(t). The optimization
is performed within a limited time window starts by ti
with length Tp. To achieve offset free MPC, it will be de-
signed based on an augmented model of the plant which
is given as

ẋ(t) = Ax(t) +Bu̇mpc(t), (14)
qi(t) = Cx(t),

where x(t) =

[
ẋp(t)
qi(t)

]
, A =

[
Ap O2×1

Cp 1

]
, B =

[
Bp
0

]
,

and C =
[
O1×2 1

]
.

The MPC design is based on the solution of the so-
called Finite Horizon Optimal Control Problem which
consists of minimizing a suitably defined cost function
with respect to the control sequence. The cost function is
given as:

J =

∫ Tp

0

(qr(ti)− q(ti + ι|ti))TQmpc(qr(ti)

−q(ti + ι|ti)) + u̇Tmpc(ι)Rmpcu̇mpc(ι)dι,

(15)

where Qmpc and Rmpc are weighting matrices that must
be positive definite to ensure the stability of the outer
loop.

In our design, the controller models the system re-
sponse using a generic function series approximation

Fig. 3: Block diagram of DOb internal loop



technique based on Laguerre polynomials with parame-
ters; a that is the scaling factor and b is the number of
terms. By applying the principle of receding horizon con-
trol (i.e., the control action will use only the derivative of
the future control signal at ι = 0), one can get the deriva-
tive of the optimal control for the unconstrained problem.

To ensure the outer loop stability, an exponential
weighted cost function [7] is used in which the system
matrix, A, is modified to be (A − %I) and Qmpc to be
(Qmpc+2%Pmpc), where Pmpc is the solution of the Ric-
cati equation. The selection of weighting factor, %, is to
make sure that the design model with (A − %I) is sta-
ble with all eigen values on the left-half of the complex
plane.

In order to specify the closed-loop response speed, a
new tuning parameter, β, is used. During solution of Ric-
cati equation, the A matrix is modified to (A + βI) and
Qmpc to (Qmpc + 2(%+ β)Pmpc).

Fig. 4 shows the complete block diagram of the pro-
posed control system. Since the vehicle (quadrotor) is
an under-actuated system, i.e., only 4 independent con-
trol inputs are available against the 6 DOF, the position
and the yaw angle are usually the controlled variables,
while pitch and roll angles are used as intermediate con-
trol inputs for horizontal positions control. Therefore,
the proposed control system consists from two DOb-
based controllers by dividing q in to two parts; one for
ζ = [x, y, z, ψ, θ1, θ2]T (with MPCζ , Mnζ , Pζ , Qζ) and
the other for σb = [θ, φ]T (with MPCσ , Mnσ , Pσ , Qσ).
The desired end-effector’s pose, χe,r, is fed to a point-to-
point inverse kinematics algorithm [8] such that the de-
sired vehicle/joint space trajectories, ζr(t), are obtained.
After that, the controller block receives the desired tra-
jectories and the feedback signals from the system and
provides the control signal, τ . The desired values for the
intermediate controller, σb,r, are obtained from the output
of position controller, τζ , through the following relation

σb,r =
1

τζ(3)

[
C(ψ) S(ψ)
S(ψ) −C(ψ)

] [
τζ(1)
τζ(2)

]
. (16)

Note that C(.) and S(.) are short notations for cos(.) and
sin(.), respectively. The output of the two controllers, τζ
and τσ , are mixed to generate the final control vector, τ ,
which is then converted to the forces/torques applied to
quadrotor/manipulator through the following relation

u = B−1
6

τζ(1 : 4)
τσ

τζ(5 : 6)

 , (17)

where B6 ∈ R6×6 is part of B matrix and it is given by
B6 = B(3 : 8, 1 : 6).

3.3. Fault Tolerant Control Design
The control objective is to design a PFTCS based on

the MPC/DOb control approaches such that the tracking
error can be minimized even if the actuators are faulty.
By utilizing the control matrix, N , several actuator fault
scenarios can be simulated and evaluated. This can be

implemented by varying the actuators parameters (γj =
Kmj/Kfj , Kτ1 and Kτ2 ) in (17).

4. SIMULATION RESULTS
In this section the previously proposed control system

is simulated using MATLAB/SIMULINK program to the
model of the considered aerial manipulation robot. Note
that the model has been identified on the basis of real data
through experimental tests, and a normally distributed
measurement noise, with mean of 10−3 and standard de-
viation of 5× 10−3, has been added to the measured sig-
nals. In addition, the external disturbances are simulated
as picking a payload of value 150 g at instant 15 s and
placing it at instant 55s. As a result, the simulation envi-
ronment is quite realistic. The identified parameters are
given in [6].

To achieve task space control, the desired values of
end-effector pose are used to generate the desired trajec-
tories for ζ using the inverse kinematics and then applied
to the algorithm for generating the desired trajectories
in the quadrotor/joint space which will provide Quintic
polynomial trajectories as the reference trajectories. By
using these types of trajectories for the joint space con-
trol, one can avoid the vibrational modes because they
have sinusoidal acceleration. Parameters of DOb-based
control is given in Table 1.

4.1. Fault Simulation
Simulation of the fault scenarios is presented in Fig.

5. The actuators’ losses with different percentages and at
different instants are simulated and evaluated.

The simulation results in the quadrotor/joint space are
presented in Fig. 6. These results show that the proposed
PFCS has the capability to handle the faults even if the
actuators lose their efficiency simultaneously with a fixed
controller parameters (i.e. There is no need to change the
parameters of the controller.). Fig. 7 shows the response
of system in the task space (the actual end-effector posi-
tion and orientation can be found from the forward kine-
matics). Fig. 8 shows the control effort (the required
thrust forces and manipulator torques), which ensure that

Table 1: Controller parameters

Par. Val. Par. Val.

Mnζ diag{1.2, 1.2, 2, 0.5, 0.005, 0.005} %mpcζ 10

Mnσ diag{0.5, 0.5} QmpcζC
TC

umax [6, 6, 6, 6, 0.7, 0.4]T QmpcσC
TC

umin [0, 0, 0, 0,−0.7,−0.4]T Rmpcζ I6

Pζ diag{2.4, 2.4, 14.5, 0.6950, 19.5, 4.5}Rmpcσ I2

Pσ diag{1.3, 0.76} %mpcσ 15

βmpcζ 5 Tp 70

βmpcσ 10 b 6

gvi 100 a 0.6



Fig. 4: Block diagram of the detailed control system for the quadrotor manipulation system

they are in the allowable limits. Therefore, one can con-
tend that the proposed motion control scheme is able to
achieve the control objectives.

5. CONCLUSION

The problem of the fault tolerant control of an aerial
manipulation robot is presented. A Passive Fault Toler-
ant Control System is designed based on the DOb and
MPC principles. The DOb loop is used to enforce ro-
bust linear input/output behavior of the plant by cancel-
ing the effect of disturbances, faulty actuators, measure-
ment noise, and plant/model mismatch. After that, the
MPC controller is used in the external loop to achieve the
required closed loop performance and control objectives
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with low computational load. The system is simulated us-
ing MATLAB/SIMULINK. Simulation results enlighten
the efficiency of the proposed controller.
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