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Abstract— This paper introduces motion control scheme of a
new aerial manipulation system that consists of 2-link manip-
ulator attached to the bottom of a quadrotor. This new system
presents a solution for the limitations found in the current
quadrotor manipulation systems. This new system are very
attractive for a wide range of applications due to their unique
features. However, control of such system is quite challenging
because it is naturally unstable, has strong nonlinearities
and couplings, are very susceptible to parameters variations
due to carrying a payload besides the external disturbances
like wind, and has actuator limitations. A robust optimal
linear control scheme is proposed to address these issues. The
proposed control scheme is based on a hybrid linear Model
Predictive Control (MPC) and linear Disturbance Observer
(DOb) techniques. The motivation for using DOb, apart from
its property of providing robustness to the scheme in front of
a significant class of nonlinearities/uncertainties, by estimating
the nonlinear terms and external disturbances, allowing one
to solve the model predictive control optimization problem
relying on a set of linearized decoupled SISO systems which
are not affected by nonlinear/uncertain terms. As a result, a
standard MPC can be used and the resulting control scheme
is characterized by a low computational load with respect to
conventional nonlinear robust solutions. Stability analysis of
the proposed control system is implemented. The controller is
tested to achieve tracking of a point-to-point task space and
trajectory quadrotor/joint space control under the effect of
picking/placing a payload, changing the operating region, and
measurement noise. System simulation is implemented in MAT-
LAB/SIMULINK environment with real system parameters, to
better emulate a realistic set up. Simulation results show the
feasibility and effectiveness of the proposed control technique.

I. INTRODUCTION
Quadrotor is one of the Unmanned Aerial Vehicles (UAVs)

which offer possibilities of speed and access to regions
that are otherwise inaccessible to ground robotic vehicles.
Quadrotor vehicles possess certain essential characteristics,
such as small size and cost, Vertical Take Off and Landing
(VTOL), and slow precise movements, which highlight their
potential for use in vital applications [1]. Due to their supe-
rior mobility, much interest is given to utilize them for mobile
manipulation such as inspection of hard-to-reach structures
or transportation in remote areas. Several researches has
been conducted in the area of aerial manipulation [2]–[9].
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However, the previous introduced systems in the literature
that uses a gripper suffers from the limited allowable DOF
of the end-effector. The other systems have a manipulator
with either two DOF but in certain topology that disables
the end-effector to track arbitrary 6-DOF trajectory, or more
than two DOF which decreases greatly the possible payload
carried by the system. Moreover, the control schemes that
were presented in the literature for such robots are based on
nonlinear controllers which are very complicated and have
very high computational cost.

In [10], we propose a new aerial manipulation system
that consists of a 2-link manipulator attached to the bottom
of a quadrotor. This new system presents a solution for
the limitations found in the current quadrotor manipulation
systems. Firstly, our proposed aerial manipulator has the
capability of manipulating the objects with arbitrary location
and orientation because it posses 6-DOF. Secondly, it is
based on a minimum manipulator weight for aerial manipula-
tion (2-DOF manipulator). Thirdly, the manipulator provides
sufficient and controlled distance between quadrotor and
object location. In [11], the dynamic model of this system
is derived taking into account the effect of adding/releasing
a payload to the manipulator.

There are several issues when working with the aerial
manipulation systems. The first one is achieving the position
holding. In order to achieve this task, a robust control must
be implemented such that it can reject uncertainties and
disturbances in the system such as wind, payload changes,
operation region changes, and measurement noise. The sec-
ond issue with this system is the limitations of the actuators
(thrusters and manipulator motors) which may degrade the
performance if it is not considered during controller design.
The third issue is the speed of the controller response which
must be fast enough to be suitable with the high speed
dynamics of the flying robot [12], so there is a need to design
a low computational and fast response control algorithm.

To overcome the problem of robustness against nonlinear-
ities, disturbances, uncertainties, measurements noise, and
changes of the operating regions, we propose DOb based
control technique to achieve the required robustness. The
DOb estimate the nonlinear terms and uncertainties then
compensates them such that the robotic system acts like a
multi-SISO linear systems.

Disturbance Observer (DOb)-based controller is one of
the most popular methods in the field of robust motion
control due to its simplicity and computational efficiency.
The authors in [13], [14] present the principles of DOb-based
control system. In DOb-based robust motion control systems,



internal and external disturbances are observed by DOb,
and the robustness is simply achieved by feeding-back the
estimated disturbances in an inner-loop. Another controller
is designed in an outer loop so that the performance goals
are achieved without considering internal and external distur-
bances. In [15]–[18], DOb-based control technique has been
applied to robotic systems and showed efficient performance.
The stability analysis of DOb is investigated in [19], [20],
which show that the system stability is guaranteed with the
DOb-based control.

Therefore, it is possible to rely on the standard linear
MPC methodology to design the controller of the outer loop
such that the system performance can be adjusted to achieve
desired tracking accuracy and speed, as well as actuators
constraints with low computational load.

Model Predictive Control can represent an appropriate
choice to solve this kind of issues partly, providing an
optimal control strategy in case of complex constrained
dynamical systems [21]–[24]. Its application to robotic sys-
tems in a true industrial environment, in which disturbances
affect the robotic system and the model of the robot is
inevitably inaccurate, is still limited. This is due to the high
nonlinearity and uncertainties of dynamics in the robotics
system. In [25], [26], a nonlinear MPC is utilized to solve the
problem of the control of highly nonlinear systems. In [27],
robust MPC control design based on feedback linearization
and sliding mode control is utilized to achieve trajectory
tracking of robotic manipulator. In [28], nonlinear MPC
with nonlinear DOb is used to control a robotic system.
However, the nonlinear control methods make the MPC to
be more complex and has high computational cost which is
not suitable to our robotic system.

This paper is organized as follows: In section II, the
considered robotic system is described, and kinematic and
dynamic analysis are reviewed. The control problem to
solve is formulated and the DOb and MPC approaches are
described in section III. In section IV, simulation results
using MATLAB/SIMULINK are presented. Finally, the main
contributions are concluded in section V.

II. DESCRIPTION AND MATHEMATICAL
MODELING

3D CAD model of the proposed system is shown in Fig.
1. The system consists mainly of two parts; the quadro-
tor and the manipulator. Fig. 2 presents a sketch of the
proposed system with the relevant frames which indicates
the unique topology that permits the end-effector to achieve
arbitrary pose. The frames satisfy the Denavit-Hartenberg
(DH) convention [29]. The manipulator has two revolute
joints. The axis of the first revolute joint (z0), that is fixed to
the quadrotor, is parallel to the body x-axis of the quadrotor
(see Fig. 2). The axis of the second joint (z1) is perpendicular
to the axis of the first joint and will be parallel to the body
y-axis of quadrotor at home (extended) configuration. Thus,
the pitching and rolling rotation of the end-effector is now
possible independently from the horizontal motion of the
quadrotor. Hence, with this new system, the capability of

Fig. 1: 3D CAD model of the New Quadrotor Manipulation
System

Fig. 2: Schematic of Quadrotor Manipulation System with
relevant frames

manipulating objects with arbitrary location and orientation
is achieved. By this non-redundant system, the end-effector
can achieve 6-DOF motion with minimum number of actua-
tors/links which is an important factor in flight. The proposed
system is distinguished from all other previous systems in
the literature by having maximum mobility with minimum
weight. The quadrotor components are selected such that it
can carry a payload equals 500g (larger than the total arm
weight and the maximum payload). Asctec pelican quadrotor
[30] is used as the quadrotor platform. The maximum thrust
force for each rotor is 6N as obtained from an identification
process.

The arm components are designed, selected, purchased and
assembled such that the total weight of the arm is 200g, has
maximum reach in the range between 22cm to 25cm, and can
carry a payload of 200g. Three DC motors, (HS-422 (Max
torque = 0.4N.m) for gripper, HS-5485HB (Max torque =
0.7N.m) for joint 1, and HS-422 (Max torque = 0.4N.m)
for joint 2), are used.

Each rotor j has angular velocity Ωj and it produces thrust
force Fj and drag moment Mj which are given by:

Fj = KfjΩ
2
j (1)

Mj = KmjΩ
2
j (2)



where Kfj and Kmj are the thrust and drag coefficients.

Let Σb, Ob- xb yb zb, denotes the vehicle body-
fixed reference frame with origin at the quadrotor

center of mass, see Fig. 2. Its position with respect
to the world-fixed inertial reference frame, Σ, O- x
y z, is given by the (3x1) vector pb = [x, y, z]T ,
while its orientation is given by the rotation matrix Rb:

Rb(Φb) =

C(ψ)C(θ) S(ψ)S(θ)C(ψ)− S(ψ)C(φ) S(ψ)S(φ) + C(ψ)S(θ)C(φ)
S(ψ)C(θ) C(ψ)C(φ) + S(ψ)S(θ)S(φ) S(ψ)S(θ)C(φ)− C(ψ)S(φ)
−S(θ) C(θ)S(φ) C(θ)C(φ)

 , (3)

where Φb=[ψ, θ, φ]T is the triple ZY X yaw-pitch-roll
angles. Note that C(.) and S(.) are short notations for cos(.)
and sin(.). Let us consider the frame Σe, O2- x2 y2 z2,
attached to the end-effector of the manipulator, see Fig. 2.
Thus, the position of Σe with respect to Σ is given by

pe = pb +Rbp
b
eb, (4)

where the vector pbeb describes the position of Σe with respect
to Σb expressed in Σb. The orientation of Σe can be defined
by the rotation matrix

Re = RbR
b
e, (5)

where Rbe describes the orientation of Σe w.r.t Σb.

The equations of motion of the proposed robot have been
derived in details in [10]. Applying Newton Euler algorithm
[31] to the manipulator considering that the link (with length
L0) that is fixed to the quadrotor is the base link, one can
get the equations of motion of the manipulator as well as
the interaction forces and moments between the manipulator
and the quadrotor. The effect of adding a payload to the
manipulator will appear in the parameters of its end link,
link 2, (e.g. mass, center of gravity, and inertia matrix).
The Newton Euler method are used to find the equations
of motion of the quadrotor after adding the forces/moments
from the manipulator.

The dynamical model of the quadrotor-manipulator system
can be written as follows:

M(q)q̈ + C(q, q̇)q̇ +G(q) + dex = τ ; τ = Bu (6)

where q = [x, y, z, ψ, θ, φ, θ1, θ2]T is (8x1) vector of the
generalized coordinates, M represents the symmetric and
positive definite inertia matrix of the combined system, C
is the matrix of Coriolis and centrifugal terms, G is the
vector of gravity terms, dex is (8x1) vector of the external
disturbances, τ is (8x1) vector of the generalized input
torques/forces, u = [F1, F2, F3, F4, τm1 , τm2 ]T is vector of
the actuator inputs, B = HN is the input matrix which
is used to generate the body forces and moments from the

Fig. 3: Functional block diagram of the proposed control
system

actuator inputs. N is given by:

N =



0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 0 0
γ1 −γ2 γ3 −γ4 0 0
−d 0 d 0 0 0
0 −d 0 d 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(7)

where γj = Kmj/Kfj , and H is (8x8) matrix that
transforms body input forces to be expressed in Σ and is
given by:

H =

 Rb O3 O2

O3 TTb Rb O2

O2x3 O2x3 I2

 (8)

III. CONTROLLER DESIGN
This section presents the proposed motion control strategy

and DOb based control. Fig. 3 presents the functional block
diagram of the proposed control system. In this control
strategy, the system nonlinearities, uncertainties, external
disturbances, τdis, are treated as disturbances which will be
estimated, τ̂dis, and canceled by the DOb in the inner loop.
The system can be now considered as linear SISO plants and
thus the MPC is used in the external loop to achieved the
objective response for the system by producing τdes.

A. Disturbance Observer Loop

A block diagram of the DOb inner loop is shown in Fig.
4.

In this figure, Mn ∈ R8x8 is the system nominal in-
ertia matrix, τ and τdes are the robot and desired in-
puts, respectively, P = Diag([g1, ..., gi, ..., g8]) with gi



is the bandwidth of the ith variable of q, Q(s) =
Diag([ g1

s+g1
, ..., gi

s+gi
, ..., g8

s+g8
]) ∈ R8x8 is the matrix of

the low pass filter of DOb. It is a well known fact that a
DOb requires precise velocity measurement. Therefore, the
velocity is estimated by using a low pass filter, Qv(s) =
Diag([

gv1
s+gv1

, ...,
gvi
s+gvi

, ...,
gv8
s+gv8

]) ∈ R8x8, and with cut-off
frequency of Pv = Diag([gv1 , ..., gvi , ..., gv8 ]) (i.e. precise
velocity measurement is achieved in a predetermined band-
width). τdis represents the system disturbances including the
Coriolis, centrifugal and gravitational terms, and τ̂dis rep-
resents the system estimated disturbances. The disturbance
observer regards the difference between the actual input
torque and output of the inverse of nominal model as an
equivalent disturbance applied to the nominal model. This
equivalent disturbance is fed back through low pass filter to
cancel the actual disturbance. The roles of low pass filter are
to diminish the high frequency noise in measured signal and
to make the inverse of nominal system realizable. In this way,
every disturbance acting on plant is dynamically canceled by
feed forward compensation of filtered equivalent disturbance
for designed frequency range. If we apply the concept of
disturbance observer to the proposed system, the independent
coordinate control is possible without considering coupling
effect of other coordinates. The coupling terms such as
centripetal and Coriolis and gravity terms are considered
as disturbance and compensated by feed forward estimated
disturbance torque.

The system disturbance τdis can be assumed as:

τdis = (M(q)−Mn)q̈ + τd;

τd = C(q, q̇)q̇ +G(q) + dex
(9)

Substituting from (9), then (6) can be rewritten as:

Mnq̈ + τdis = τ (10)

Now if the disturbance observer performs optimally, that is
τ̂dis = τdis, the dynamics from the DOb loop input τdes to
the output of the robot manipulator is given by:

Mnq̈ = τdes (11)

Since Mn is a diagonal matrix, the system can be treated as
multi-decoupled linear SISO systems as following:

Mnii q̈i = τdesi , (12)

or simply in the acceleration space as:

q̈i = q̈desi (13)

The control input, τ , in Fig. 4 can be calculated as:

τ =
1

(1−Q(s))
[Mnq̈

des −Q(s)Mnq̈]

= Mnq̈
des +MnPev; ev = q̇des − q̇

(14)

This control law leads to the following error dynamics:

M(q)ėv + C(q, q̇)ev +Kvev = δ;

Kv = PMn

(15)

Fig. 4: Block diagram of internal loop (DOb)

where

δ = ∆M(q)q̈des + C(q, q̇)q̇des +G(q) + dex;

∆M(q) = M(q)−Mn,
(16)

Equation (15) represents the error dynamics of DOb-based
robust control of the quadrotor manipulation system.

To study the inner loop stability, assume the following
Lyapunov function:

V =
1

2
eTvM(q)ev +

1

2
δT δ (17)

The time derivative of this function is:

V̇ = eTvM(q)ėv +
1

2
eTv Ṁ(q)ev + δT δ̇ (18)

Substituting from (15),

V̇ = eTv δ−eTvKvev+
1

2
eTv (Ṁ(q)−2C(q, q̇))ev+δT δ̇ (19)

The dynamic equation of motion (6) posses several well
known properties [29], [32]. These properties will be used to
complete the stability analysis and they are stated as follows:

λmin‖ν‖2 ≤ νTM(q)ν ≤ λmax‖ν‖2 (20)

νT (Ṁ(q)− 2C(q, q̇))ν = 0 (21)

where Ṁ(q)−2C(q, q̇) is a skew-symmetric matrix, ν ∈ R8

represents a 8-dimensional vector, and λmin and λmax are
positive real constants.

Substituting from (21) into (19) with the assumption that
δ changes very slow (i.e. δ̇ = 0):

V̇ = eTv δ − eTvKvev (22)

From the robot dynamic properties:

V̇ ≤ −γV +

√
2V

λmin
|δ|;

γ =
2Kv

λmax
(23)

Thus, the time derivative of the Lyapunov function is smaller
than zero and the convergence rate increases proportionally
with Kv . However, by inspecting the inner loop, one can find
that there is a practical constraint on the choice of Kv due



to the usage of the velocity filter. The characteristic equation
of the inner loop can be driven as:

Pci = s2 + gvis+ αigigvi , (24)

where, αi =
Mnii

Mii
The damping coefficient of this equation

is 0.5
√

gigvi
αgi

, which should larger than or equal 0.707 to
improve the robustness against both disturbances and noise.
Thus, the following inequality should be hold:

αgi ≤
gvi
2
, (25)

Rewrite (25) with respect to Kv ,

Kvi

Mii
≤ gvi

2
, (26)

To sum up, (23) shows that the stability and robustness
of the control system is improved by increasing Kv (i.e. by
increasing Mn and P ) but without violating the robustness
constraint in (26).

B. Linear Model Predictive Control

By virtue of the rejection of the nonlinearities, distur-
bances, uncertainties, and noise through the use of DOb
internal loop, the MPC controller have not to consider
uncertainties and can designed based on the nominal 8 SISO
decoupled models of the system with satisfying the actuators
constraints, umin ≤ u ≤ umax.

The SISO model of the system is given by:

ẋp(t) = Apxp(t) +Bpumpc(t)

qi(t) = Cpxp(t) (27)

where, Ap =

[
0 0
1 0

]
, Bp =

[
1
0

]
, Cp =

[
0 1

]
, and

umpc(t) is the output of the MPC which will be q̈des. The
general design philosophy of model predictive control is
to compute a trajectory of a future manipulated variable
umpc(t) to optimize the future behavior of the plant output
qi(t). The optimization is performed within a limited time
window starts by ti with length Tp. To achieve offset free
MPC, it will be designed based on an augmented model of
the plant which is given as following:

ẋ(t) = Ax(t) +Bu̇mpc(t)

qi(t) = Cx(t) (28)

where, x(t) =

[
ẋp(t)
qi(t)

]
A =

[
Ap O2×1

Cp 1

]
, B =

[
Bp
0

]
,

C =
[
O1×2 1

]
,

The MPC design is based on the solution of the so-called
Finite Horizon Optimal Control Problem which consists of
minimizing a suitably defined cost function with respect to
the control sequence. The cost function is given as:

J =

∫ Tp

0

(qr(ti)−q(ti+ι|ti))TQmpc(qr(ti)−q(ti+ι|ti))

+ u̇Tmpc(ι)Rmpcu̇mpc(ι)dι (29)

where Qmpc and Rmpc are weighting matrices that must be
positive definite to ensure the stability of the outer loop [22].

Obtaining the plant response model is a key part of
the implementation of an MPC controller. In our design,
the controller models the system response using a generic
function series approximation technique based on Laguerre
polynomials [33] with parameters; a which is the scaling
factor and b is the number of terms of Laguerre polynomials.
This approach provides a simple and efficient method to
mathematically model the process response with a minimum
of a priori information. By applying the principle of receding
horizon control (i.e., the control action will use only the
derivative of the future control signal at ι = 0), one can get
the derivative of the optimal control for the unconstrained
problem.

The next step is to formulate the constraints as part of
design requirements, then translate them into linear inequal-
ities, and relate them to the original model predictive control
problem. Since the predictive control problem is formulated
and solved in the framework of receding horizon control,
the constraints are taken into consideration frame-by-frame
for each moving horizon window. A simple algorithm, called
Hildreth’s quadratic programming procedure [34], was pro-
posed for solving this problem. If there are many constraints,
the computational load is quite large. Thus, in this method,
the constraints that are not active is identified systematically,
so they can then be eliminated in the solution. This method
will lead to very simple programming procedures for find-
ing real time optimal solutions of constrained minimization
problem.

To design the MPC with prescribed degree of stability
and closed loop performance can be performed as following
[24], [35]: If the matrix A contains unstable poles due to
the plant itself or the embedded integrator, then it better to
move poles of the system to the stable region. This is can
be achieved by modifying this matrix to be (A − %I) and
Qmpc to (Qmpc + 2%Pmpc), where Pmpc is the solution of
the Riccati equation. The selection of % is to make sure that
the design model with (A−%I) is stable with all eigen values
on the left-half of the complex plane. In order to specify
the closed-loop response speed, a new tuning parameter is
used β. During solution of Riccati equation the A matrix is
modified to (A+βI) and Qmpc to (Qmpc+ 2(%+β)Pmpc).

Fig. 5 shows the complete hybrid block diagram of the
proposed control system. Since the vehicle (quadrotor) is
an under-actuated system, i.e., only 4 independent control
inputs are available against the 6 DOF, the position and the
yaw angle are usually the controlled variables, while pitch
and roll angles are used as intermediate control inputs for
horizontal positions control. Therefore, the proposed control
system consists from two DOb-based controllers by dividing
q in to two parts; one for ζ = [x, y, z, ψ, θ1, θ2] (with
MPCζ , Mnζ , Pζ , Qζ) and the other for σb = [θ, φ] (with
MPCσ , Mnσ , Pσ , Qσ). The desired trajectories for the end-
effector’s position and orientation (pe,d and Φe,d) are fed
to the inverse kinematics algorithm together with σb,r(t)
from a simplified version of the nonholonomic constraints



Fig. 5: Block diagram of the detailed control system for the
quadrotor manipulation system

such that the desired vehicle/joint space trajectories ζr(t)
are obtained. After that, the controller block receives the
desired trajectories and the feedback signals from the system
and provides the control signal, τ . The desired values σb,r
for the intermediate controller are obtained from the output
of position controller, τζ , through the following simplified
nonholonomic constraints relation:

σb,r =
1

τζ(3)

[
C(ψ) S(ψ)
S(ψ) −C(ψ)

] [
τζ(1)
τζ(2)

]
(30)

However, the response of the σ controller must be much
faster than that of the quadrotor position controller such that
it can track the changes in the position controller. This can
be achieved by the tuning parameters of both DOb and MPC,
as it is explained previously.

The output of two controllers, τζ and τσ , are mixed to
generate the final control vector τ which is then converted to
the forces/torques applied to quadrotor/manipulator through
the following relation:

u = B−1

τζ(1 : 4)
τσ

τζ(5 : 6)

 (31)

IV. SIMULATION RESULTS

In this section the previously proposed control strategy
is applied in simulation MATLAB/SIMULINK program to
the model of the considered aerial manipulation robot. Note
that the model has been identified on the basis of real data
through experimental tests, and a normally distributed mea-
surement noise, with mean of 10−3 and standard deviation of
5x10−3, has been added to the measured signals. As a result,
the simulation environment is quite realistic. The identified
parameters are given in Table I.

To achieve task space control, the desired values of
end-effector position and orientation, pe,r and Φe,r, (Multi
operational regions and point-to-point control) are used to
generate the desired trajectories for ζ using the inverse
kinematics and then applied to the algorithm for generating
the desired trajectories in the quadrotor/joint space which
will provide Quintic polynomial trajectories [29] as the

TABLE I: System Parameters

Par. Value Unit Par. Value Unit
m 1 kg L2 85x10−3 m
d 223.5X10−3 m m0 30x10−3 kg
Ix 13.215X10−3 N.m.s2 m1 55x10−3 kg
Iy 12.522X10−3 N.m.s2 m2 112x10−3 kg
Iz 23.527X10−3 N.m.s2 Ir 33.216X10−6 N.m.s2

L0 30x10−3 m L1 70x10−3 m
KF1 1.667x10−5 kg.m.rad−2 KF2 1.285x10−5 kg.m.rad−2

KF3
1.711x10−5 kg.m.rad−2 KF4

1.556x10−5 kg.m.rad−2

KM1
3.965x10−7 kg.m2.rad−2 KM2

2.847x10−7 kg.m2.rad−2

KM3
4.404x10−7 kg.m2.rad−2 KM4

3.170x10−7 kg.m2.rad−2

TABLE II: Controller parameters

Parameter V alue
Mnζ Diag{1.2, 1.2, 2, 0.5, 0.005, 0.005}
Mnσ Diag{0.5, 0.5}
Qmpcζ CTC

Qmpcσ CTC
Rmpcζ I6
Rmpcσ I2
%mpcζ 10

%mpcσ 15
βmpcζ 5

βmpcσ 10
umax [6, 6, 6, 6, 0.7, 0.4]
umin [0, 0, 0, 0,−0.7,−0.4]
Pζ Diag{2.4, 2.4, 14.5, 0.6950, 19.5, 4.5}
Pσ Diag{1.3, 0.76}
gvi 100
a 0.6
b 6
Tp 70

reference trajectories. By using these types of trajectories for
the joint space control, we can avoid the vibrational modes
because they have sinusoidal acceleration.

Parameters of DOb-based control is given in Table II.
The controller is tested to stabilize and track the desired
quadrotor/joint space trajectories under the effect of picking
a payload of value 150g at instant 15s and placing it at instant
55s. The simulation results in quadrotor/joint space are
presented in Fig. 6. Fig. 7 shows response of system in the
task space (the actual end-effector position and orientation
can be found from the forward kinematics). These results
show that the proposed motion control scheme able to track
the desired trajectories, with achieving the control objectives.
Figs. 8 shows the control effort, the required thrust forces and
manipulator torques which are in the allowable limits.

V. CONCLUSION

The problem of the motion control of a new aerial ma-
nipulation robot called ”Quadrotor Manipulation System” is
presented. This robot has several issues in point of view the
control system which have been addressed in this paper.
Description and mathematical modeling of the proposed
system are presented. Hybrid linear DOb/MPC based control
design is proposed as a motion control system. The DOb
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Fig. 6: The actual response of the Quadrotor/ Manipulator
variables: a) x, b) y, c) z, d) ψ, e) θ1, and f) θ2

loop is used to enforce robust linear input/output behavior
of the plant by canceling disturbances, measurement noise,
and plant/model mismatch. After that the MPC controller is
used in the external loop to achieve the required closed loop
performance and control objectives with low computational
load. The stability grandee is proved for this controller. The
controller is tested to achieve trajectory tracking under the
effect of picking/placing a payload, changing the operating
region, and the measurement noise. The system is simu-
lated using MATLAB/SIMULINK based on real parameters.
Simulation results indicate the efficiency of the proposed
controller.
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