
Hybrid Acceleration/Velocity-based Disturbance Observer for a
Quadrotor Manipulation System

Ahmed Khalifa1, Mohamed Fanni2 and Toru Namerikawa3

Abstract— Aerial manipulation systems become very attrac-
tive for a wide range of applications due to their unique
features. However, control of such system is quite challenging
due to its high nonlinearities, couplings, and external distur-
bances. In this paper, a Disturbance Observer (DOb)-based
linearization of a quadrotor manipulation system is utilized.
The DOb estimates the disturbances and nonlinearities, then
compensates them such that one can treat the control problem
based on a simple linear control algorithm. However, the
current developed DOb schemes in the literature are based on
the precise measurement of the acceleration or the estimation
of the velocity. Unlike, these methods, we propose a modified
DOb, which is based on both the measured linear accelerations
and angular velocities that can be obtained directly from the
onboard Inertial Measurement Unit (IMU) and encoders. With
this technique, the estimation of nonlinearities and disturbances
are carried out without the need of estimation acceleration or
velocity, and it is model free. The Effectiveness of the proposed
technique is verified via numerical simulations.

I. INTRODUCTION

Recently, aerial manipulators have much interest because
they have several vital applications in the places which are
not accessible by ground robots. Due to the superior mobility
of quadrotors, they are utilized for mobile manipulation.
Such systems open new application area for robotics. Such
applications are inspection, maintenance, firefighting, service
robot in crowded cities to deliver light stuff such as post
mails or quick meals, rescue operation, surveillance, demi-
ning, performing tasks in dangerous places, or transportation
in remote places.

Several researches have been introduced in the area of
aerial manipulation [1]–[5]. However, the previous intro-
duced systems in the literature that use a gripper suffer
from the limited allowable DOF of the end-effector. The
other systems have a manipulator with either two DOF
but in certain topology that disables the end-effector to
track arbitrary 6-DOF trajectory, or more than two DOF
which decreases greatly the possible payload carried by the
system. Moreover, the control schemes that were presented
in the literature for such robots are based on nonlinear

1Ahmed Khalifa is with Department of System Design Engineering, Keio
University, Yokohama, Japan. On study leave from Department of Mecha-
tronics and Robotics Engineering, Egypt-Japan University of Science and
Technology, Alexandria, Egypt. ahmed.khalifa@ejust.edu.eg

2Mohamed Fanni is with Department of Mechatronics and Robotics Engi-
neering, Egypt-Japan University of Science and Technology. On leave from
Department of Production Engineering and Mechanical Design, Mansoura
University, Mansoura, Egypt. mohamed.fanni@ejust.edu.eg

3Toru Namerikawa is with Department of System
Design Engineering, Keio University, Yokohama, Japan.
namerikawa@nl.sd.keio.ac.jp

controllers which are very complicated and have very high
computational cost.

One of the key issues for aerial manipulation is achieving
the position holding. In order to achieve this task, a robust
control must be implemented such that it can cope up with
the nonlinearities, couplings, uncertainties, and disturbances.
The robustness issue for such system is addressed in [6] by
using a DOb based control technique. The DOb estimates
the nonlinear terms and uncertainties then compensates them
such that the robotic system acts like a multi-SISO linear
systems. Therefore, it is possible to rely on the standard
linear control methodology to design the controller of the
outer loop such that the system performance can be adjusted
to meet desired tracking accuracy.

However, the previous work [7]–[13] in the DOb requires
the estimation of the acceleration or the velocity of the
system that is very difficult to obtain and has limitations
due to the available sensor for flying robots. Moreover, it
is feasible to measure the linear accelerations and angular
velocities via IMU and encoders. In [14], the external wrench
is estimated by using a model-based method for a simple
UAV. In addition, the author utilizes the IMU data for the
estimation. However, this method needs to know the dynamic
models, neglects some dynamics and nonlinearities, uses a
nonlinear controller, estimates only the external disturbances
without estimating the system dynamics. Thus, this technique
is not good choice for the considered aerial manipulator
which is high complex dynamical and kinematic robotic
system.

To cope up with these limitations, the conventional DOb
is modified to be compatible and feasible with the aerial
manipulation system. Firstly, the conventional DOb is re-
designed and reformulated to use the linear acceleration and
angular velocities data, which can be measured directly via
the onboard IMU and encoders, to estimate the disturbances
and nonlinearities. Secondly, this estimated data is fed back
to the system such that it can be compensated and the system
becomes linear. Thirdly, a performance linear controller is
designed in the outer loop to achieve the objective response.
Fourthly, a Jacobian based inverse kinematics algorithm is
presented such that one can track desired 6-DOF task space
trajectories. Finally, a simulation setup, with some non-
idealities to emulate a realistic one, is built to verify the
proposed technique.

This paper is organized as follows: In section II, the
considered robot is described, and kinematic and dynamic
analysis are reviewed. The control problem is formulated
and presented in section III. In section IV, simulation results



using MATLAB/SIMULINK are presented. Finally, the main
contributions are presented in section V.

II. MATHEMATICAL MODEL

Design and modeling of the quadrotor manipulation sys-
tem are presented in details in [5]. The system consists
mainly of two parts; the quadrotor and the manipulator. 3D
CAD model of it is shown in Fig. 1. Fig. 2 presents a sketch

Fig. 1. 3D CAD model of the Quadrotor Manipulation System

of such system with the relevant frames which indicates
the unique topology that permits the end-effector to achieve
arbitrary pose. The frames satisfy the Denavit-Hartenberg
(DH) convention. The quadrotor components are selected

Fig. 2. Schematic diagram of Quadrotor Manipulation System with relevant
frames

such that it can carry a payload equals 500 g (larger than
the total arm weight and the maximum payload). Asctec
pelican quadrotor is used as the quadrotor platform. The
maximum thrust force for each rotor is 8 N as obtained from
an identification process.

The arm components are designed, selected, purchased and
assembled such that the total weight of the arm is 200 g,
has maximum reach in the range between 22 cm to 25 cm,
and can carry a payload of 200 g. Three DC motors, (HS-
422 (Max torque = 0.4 N.m) for gripper, HS-5485HB (Max
torque = 0.7 N.m) for joint 1, and HS-422 (Max torque =
0.4 N.m) for joint 2), are used.

Each rotor j has angular velocity Ωj and it produces thrust
force Fj and drag moment Mj which are given by:

Fj = KfjΩ
2
j , (1)

Mj = KmjΩ
2
j , (2)

where Kfj and Kmj are the thrust and drag coefficients.
Let Σb, Ob- xb yb zb, denotes the vehicle body-fixed

reference frame with origin at the quadrotor center of mass,
see Fig. 2. Its position with respect to the world-fixed inertial
reference frame, Σ, O- x y z, is given by the (3 × 1)
vector pb = [x y z]T , while its orientation is represented by
Φb=[ψ θ φ]T , and is given by a rotation matrix Rb, which
is given by

Rb =

CψCθ SψSθCψ − SψCφ SψSφ + CψSθCφ
SψCθ CψCφ + SψSθSφ SψSθCφ − CψSφ
−Sθ CθSφ CθCφ

 ,
(3)

where Φb=[ψ θ φ]T is the triple ZY X yaw-pitch-roll
angles. Note that C. and S. are short notations for cos(.)
and sin(.), respectively.

Let us consider the frame Σe, O2- x2 y2 z2, attached to
the end-effector of the manipulator, see Fig. 2. Thus, the
position of Σe with respect to Σ is given by

pe = pb +Rbp
b
eb, (4)

where the vector pbeb describes the position of Σe with respect
to Σb expressed in Σb. The orientation of Σe can be defined
by the rotation matrix

Re = RbR
b
e, (5)

where Rbe describes the orientation of Σe w.r.t Σb.
The generalized end-effector velocity, ve = [ṗTe , ω

T
e ]T , can

be expressed as

ve = JbQbχ̇b + JebΘ̇, (6)

with χb =

[
pb
Φb

]
, Qb =

[
I3 O3

O3 Tb

]
, where Tb describes the

transformation matrix between the angular velocity, ωb, and
the time derivative of Euler angles, Φ̇b, and it is given as

Tb(Φb) =

0 −Sψ CψCθ
0 Cψ SψCθ
1 0 −Sθ

 . (7)

Jb =

[
I3 −Skew(Rbp

b
eb)

O3 I3

]
, Jeb =

[
Rb O3

O3 Rb

]
Jbeb,

Im and Om denote (m × m) identity and (m × m) null
matrices, respectively, and Skew(.) is the (3 × 3) skew-
symmetric matrix operator [15]. Θ = [θ1, θ2]T be the
(2× 1) vector of joint angles of the manipulator. Jbeb is the
manipulator Jacobian [16].

Since the vehicle is an under-actuated system, i.e., only
4 independent control inputs are available for the 6-DOF
system, the position and the yaw angle are usually the
controlled variables. The pitch and roll angles are used as
intermediate control inputs to control the horizontal position.



Hence, it is worth rewriting the vector χb as follows χb =[
ηb
σb

]
, ηb =

[
pb
ψ

]
, σb =

[
θ
φ

]
.

Thus, the differential kinematics (6) will be

ve = Jη η̇b + Jσσ̇b + JebΘ̇

= Jζ ζ̇ + Jσσ̇b,
(8)

where ζ = [ηTb ,Θ
T ]T is the vector of the controlled vari-

ables, Jη is composed by the first 4 columns of JbQb, Jσ is
composed by the last 2 columns of JbQb and Jζ = [Jη, Jeb].

If the end-effector orientation is expressed via a triple of
Euler angles, ZY X , Φe, the differential kinematics (8) can
be rewritten in terms of the vector χ̇e = [ṗTe , Φ̇

T
e ]T as

χ̇e = Q−1
e (Φe)ve

= Q−1
e (Φe)[Jζ ζ̇ + Jσσ̇b],

(9)

where Qe is the same as Qb but it is a function of Φe instead
of Φb.

The dynamical model of the quadrotor-manipulator system
can be written as follows

M(q)q̈ + C(q, q̇)q̇ +G(q) + dex = τ,

τ = Bu,
(10)

where q = [x y z ψ θ φ θ1 θ2]T ∈ R8 is the general-
ized coordinates, M ∈ R8×8 represents the symmetric and
positive definite inertia matrix of the combined system, C
∈ R8×8 is the matrix of Coriolis and centrifugal terms, G
∈ R8 is the vector of gravity terms, dex ∈ R8 is vector of
the external disturbances, τ ∈ R8 is vector of the generalized
input torques/forces, u = [F1, F2, F3, F4, τm1 , τm2 ]T ∈ R6

is vector of the actuators’ inputs, B = HN ∈ R8×6 is the
input matrix which is used to generate the body forces and
moments from the actuators’ inputs. N ∈ R8×6 is given by

N =



0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 0 0
γ1 −γ2 γ3 −γ4 0 0
−d 0 d 0 0 0
0 −d 0 d 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (11)

where γj = Kmj/Kfj , and H ∈ R8×8 transforms body
input forces to be expressed in Σ and is given by

H =

 Rb O3 O2

O3 TTb Rb O2

O2x3 O2x3 I2

 . (12)

III. CONTROL SYSTEM DESIGN

A. Control Objectives

We target the design of the control input, τ , in order to
satisfy the following objectives:

Control Objective 1: (System Linearization) The system
nonlinearities and external disturbances are estimated by
using the measurement data that can be obtained directly

form the onboard sensors (i.e., the estimation error, τ̃dis =
τdis - τ̂dis, tends to zero as time tends to ∞).

Control Objective 2: (Robust Stability) The considered
robotic system is stable and robust against the effects of
external disturbances, uncertainties, and measurement noises.

Control Objective 3: (Trajectory Tracking) The end-
effector pose error tends to zero as time tends to ∞.

To achieve these control objectives, we propose a control
technique based on a modified DOb. In this strategy, the sys-
tem nonlinearities, uncertainties, external disturbances, τdis,
are treated as disturbances which will be estimated by using
the linear accelerations and angular velocities measurements,
τ̂dis, and canceled by the DOb in the inner loop. The system
can be now considered as linear SISO plants, and thus, the
PD loop is used in the external loop to achieved the target
performance for the system by producing τdes. The final
loop is presented to find the desired quadrotor/joint space
trajectories from the target 6-DOF task space. Hence, the
controller can be designed in the quadrotor/joint space.

B. DOb Loop

A block diagram of the DOb controller is shown in
Fig. 3 which will be utilized later to design robust control
for the proposed system. It is well known that the linear
accelerations and angular rates of the quadrotor can be
measured directly from the IMU. In addition, the angular
velocities of the joints can be measured via an encoder.
Therefore, two different DOb loops are used. One is based
on the measured acceleration, while the other is based on the
measured velocity.

In this figure, Mn =

[
Mna O3×5

O5×3 Mnv

]
∈ R8×8 is the

system nominal inertia matrix with Mna ∈ R3×3 represents
the nominal inertia for accelerations, p̈b, while Mnv ∈ R5×5

represents the nominal inertia for velocities, Φ̇b and Θ̇. τ and
τdes are the robot and desired inputs, respectively. Q(s) =
diag([ g1

s+g1
... gi

s+gi
... g8

s+g8
]) ∈ R8×8 is the matrix of the

low pass filter of DOb, Qa(s) = diag([ g1
s+g1

... g3
s+g3

]), and
Qv(s) = diag([ g4

s+g4
... g8

s+g8
]). P = diag([g1 ... gi ... g8])

with gi is the bandwidth of the ith variable of q, and
Pv = diag([g4 ... gi ... g8]) for the velocity part. τdis

represents the system disturbances including the Coriolis,
centrifugal and gravitational terms. τ̂dis = [τ̂dis

T

a τ̂dis
T

v ]T

Fig. 3. Block diagram of DOb-based controller



represents the system estimated disturbances.
The system disturbance, τdis, can be assumed as

τdis = (M(q)−Mn)q̈ + τd,

τd = C(q, q̇)q̇ +G(q) + dex.
(13)

The control input, τ , in Fig. 3 can be calculated as

τ = Mnq̈
des + τ̂dis, (14)

where
τ̂dis = Q(τ −Mnq̈). (15)

This control law leads to the following error dynamics

M(q)ėv + C(q, q̇)ev +Kvev = δ,

Kv = PMn,
(16)

where ev = q̇des − q̇, and

δ = ∆M(q)q̈des + C(q, q̇)q̇des +G(q) + dex, (17)

and ∆M(q) = M(q)−Mn.
Equation (16) represents the error dynamics of the DOb

loop. stability of these error dynamics is presented in [6].
If the DOb performs ideally, then on can assume that

all the internal and external disturbances are estimated and
compensated (i.e. τ̂dis = τdis)

Thus, the dynamics from the DOb loop input τdes to the
output of the robot manipulator is given by

Mnq̈ = τdes. (18)

Since Mn is a diagonal matrix, the system can be treated as
multi-decoupled linear SISO systems as

Mnii q̈i = τdesi , (19)

or simply in the acceleration space as

q̈i = q̈desi . (20)

All that remains in the design of the DOb based controller
is the design of the tracking controller, K(s), in the DOb
outer loop. A PD-based tracking controller for the system of
(20) is chosen as

q̈des = q̈r +KP (qr − q) +KD(q̇r − q̇), (21)

where KP and KD ∈ R8×8 are the proportional and
derivative gains of the PD controllers, receptively. qr, q̇r, and
q̈r are the references for linear/angular positions, velocities,
and accelerations, respectively.

This will lead to the following error dynamics

ë+KD ė+KP e = 0, (22)

where e = qr−q, which are asymptotically stable provided
that the gains, KP and KD , are positive definite matrices.

C. Jacobian-based Inverse Kinematics

To achieve task space control, the desired 6-DOF trajec-
tories of the end-effector pose, χe,r, are used to generate the
desired trajectories for the quadrotor/joint space independent
coordinates, ζ, using the inverse kinematics, while the depen-
dent coordinates, σb, can be obtained from the nonholonomic
constraints.

The differential kinematics (9) are considered to derive a
closed-loop inverse kinematics algorithm [17].

ζ̇r = J−1
ζ {Qe[χ̇e,r +Keee]− Jσσ̇b} (23)

where χ̇e,r is the desired translational and rotational veloc-
ities of end-effector, and ee = χe,r − χe is the kinematic
inversion error. Ke is a positive definite gain matrix. By
integrating, ζ̇r, one can obtain the desired trajectories in
the quadrotor/joint space, ζr. The drift of the due to the
integration is corrected by the task space error,ee.

Fig. 4 presents a block diagram of the proposed motion
control system based on the inverse kinematics analysis
and on quadrotor/joint space-based control. The desired
trajectories for the end-effector’s position and orientation
χe,r (pe,r(t) and Φe,r(t)) are fed to the inverse kinematics
algorithm together with σb,r(t) from a simplified version
of the nonholonomic constraints such that the desired ve-
hicle/joint space trajectories ζr(t) are obtained. After that,
the controller block receives the desired trajectories and the
feedback signals from the system and provides the control
signal, τ = Bu.

Since the position and the yaw angle are usually the
controlled variables while pitch and roll angles are used as
intermediate control inputs for horizontal positions control,
the proposed control system consists from two DOb-based
controllers; one for ζ (with Kζ(s), Mna , Mnv1 ,Pv1 , Qv1 ,
and Qa) and the other for σb (with Kσ(s), Mnv2 , Pv2 , Qv2 ).

The desired values σb,r for the intermediate controller are
obtained from the output of position controller, τζ , through
the simplified nonholonomic constraints

σb,r =
1

τζ(3)

[
Cψ Sψ
Sψ −Cψ

] [
τζ(1)
τζ(2)

]
(24)

The output of two the controllers, τζ and τσ , are mixed to
generate the final control vector τ which is converted to the

Fig. 4. Detailed block diagram of the control system



TABLE I
DOB BASED CONTROLLER PARAMETERS

Par. Value Par. Value

Mnζ diag{2 2 2 0.5 0.5 0.5}Mnσ diag{0.5 0.5}
KPζ diag{3 3 10 3 3 3} KPσ diag{10 10}
KDζ diag{1.5 1.5 5 3 3 3} KDσ diag{7 7}
Ke diag{10 10 10 3 3 3} P [10 10 10 100 100 100 100 100]T

forces/torques applied to quadrotor/manipulator through the
following relation:

u = B−1
6

τζ(3, 4)
τσ

τζ(5, 6)

 , (25)

where B6 ∈ R6×6 is part of B matrix and it is given by
B6 = B(3 : 8, 1 : 6).

IV. SIMULATION STUDY

In this section, the previously proposed control strategy is
simulated in MATLAB/SIMULINK program for the consid-
ered aerial manipulation system.

A. Simulation Environment

In order to make the simulation quite realistic, the follow-
ing setup and assumptions have been made:

• The model has been identified on the basis of real data
through experimental tests [18].

• Linear and angular position and velocity of the quadro-
tor are available at rate of 1 KHz.

• The position and velocity of the manipulator joints are
available at rate of 1 KHz [19].

• A normally distributed measurement noise, with mean
of 10−3 and standard deviation of 5 × 10−3, has been
added to the measured signals.

• The controller outputs are computed at a rate of 1 KHz.
• In order to test the robustness to the model uncertainties,

a step disturbance is introduced, at instant 15 s, in the
control matrix, N , (Actuators’ losses), whose elements
are assumed to be equal to 0.9 times their true values
(i.e., 10% error).

• The end-effector has to pick a payload of value 200 g
at instant 20 g and release it at 40 s.

B. Results and Discussion

Tables I presents the controller parameter for the proposed
control technique. The reference trajectories for the end-
effector are chosen such that the end-effector moves on a
circular helix, while its orientation is fixed in a case and
follows quintic polynomial trajectories in another case.

Fig. 5 presents the norm of the estimation error, τ̃dis, in all
coordinates. At the beginning of operation, the error has high
value which decreases gradually after about 3 s till reaches
to 0. It is noted also that at instants of applying/releasing
the payload their is a small error that the DOb recovers it

quickly in about 1 s after which the error returns again to 0.

Figs. 6 and 7 show the response of system in the task
space (the actual end-effector position and orientation can
be found from the forward kinematics). These figures appear
the capability of the proposed scheme to track the desired
6-DOF end-effector trajectories in the presence of quite
realistic operation non-idealities such as payload handling
and measurement noise. Therefore, one can contend that
the proposed motion control scheme is able to achieve the
control objectives.

V. CONCLUSION

The issue of a more reliable and efficient robust lineariza-
tion and control of an aerial manipulation robot is investi-
gated. A modified DOb loop is used to enforce robust linear
input/output behavior of the plant by canceling the effect of
disturbances, measurement noise, and plant/model mismatch.
Unlike the current introduced schemes, the DOb utilizes the
available measurement data from the IMU and encoders to
estimate the disturbances. After that, the PD controller is
used in the external loop to achieve the required closed loop
performance and control objectives with low computational
load. The system is simulated using MATLAB/SIMULINK.
Simulation results enlighten the efficacy of the proposed
controller.
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