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Abstract

In this article, the position kinematic analysis of a novel quadrotor manipulation system is presented.

In this system, a quadrotor is attached with 2-DOF robotic arm. The proposed robot addresses the

limitations found in the current aerial manipulators. To check the reliability of the proposed system,

a quadrotor with high allowable payload capability is selected and the robot arm is designed. Forward

and inverse kinematics are derived to be utilized in the control system in order to reach the desired

position and orientation of the end-effector. The controller design of the proposed robot is proposed, in

the quadrotor/joint space, based on Disturbance Observer (DOb) and compared to an adaptive intelligent

controller. Stability analysis of the proposed control system is presented. The two controllers are tested to

achieve point-to-point control of the end-effector under the effects of picking/releasing an object, changing

the point of operation, and measurement noise. Simulation study is carried out in MATLAB environment.

The results show the feasibility of the proposed system, in addition to, the effectiveness of the kinematic

analysis and the proposed controller.
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1. Introduction

Recently, Unmanned Aerial Vehicles (UAVs) attracts the research due to their ability of speed and

access to regions that are not reached by ground robots. One of them are the Quadrotor that have

certain characteristics, such as small size and cost, Vertical Take Off and Landing (VTOL), slow precise

movements, which enlighten their capabilities for use in vital applications such as homeland security

and earth sciences [1]. However, most research on UAVs has typically been limited to monitoring and

surveillance applications where heir tasks are limited to look and search. Due to their superior characteristics,

quadrotrs has high interest to be used in aerial manipulation.
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Previous research on aerial manipulation can be divided into three approaches. In the first approach,

a gripper is mounted at the bottom of an UAV to hold a payload [2], which is utilized in transportation of

objects and structure building. However, in this system, the payloads are attached to the body of an UAV

rigidly. As a result, the attitude of the object has the same the orientation of the quadrotor, in addition

to, the limited range of the end-effector is due to the quadrotor’s body.

Secondly, a payload is suspended with cables [3]. In [4], specific attitude and position of a payload

is achieved using cables connected to three quadrotors. However, using cables cannot always provide the

required motion for the payload.

The third approach concentrates on the interaction with an existing structure, as example, for contact

inspection. In [5] research has been conducted on utilizing a force sensor or a brush as a manipulator.

However, this approach can be used only in specific tasks such as wall inspection.

To cope up with these limitations, an approach is developed in which the quadrotor is equiped with

a robot arm. In [6], a helicopter platform is equipped with dual robotic arm to do aerial manipulation.

In [7], a test bed with four-DOF robot arms and a crane emulating an aerial robot is presented. In [8–10]

a manipulator with more than two links were used. In [11], a quadrotor with dual robotic arm are

combined. However, with these systems, the final payload of the quadrotor is decreased due to the

excessive manipulator weight.

In [12], we proposed a new aerial manipulation system that has a two DOF manipulator mounted at the

center bottom of a quadrotor. This robot addresses the issues appeared in the currently developed aerial

manipulators. Firstly, our proposed robot can manipulate the objects with arbitrary pose. Secondly, it uses

a minimum manipulator weight (2-DOF manipulator). Thirdly, using the robot arm allows a significant

and controlled distance between the platform and the object. In [13], an aerial manipulator using a

quadrotor with a 2-link manipulator is proposed but with different topology such that It can not solve the

issue of the limited DOFs of the system. Moreover, the inverse kinematics problem has not been solved

yet. The proposed flying robot enlighten new robotic applications such as inspection, firefighting, rescue

operation, surveillance, demining, carrying out missions in risky places, and transportation in remote

places.

In this article, the design and modeling of the proposed aerial manipulator are described. In addition,

the forward/inverse position kinematics analysis are derived which will be utilized to control the end-

effector position and orientation. Moreover, a quadrotor/joint space controller is designed based on

Disturbance Observer (DOb) technique.
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Figure 1: 3D-CAD model of the proposed ystem Figure 2: Schematic diagram of the system with frames

2. Description and Kinematic Analysis of the Proposed System

Fig. 1 shows the structure of the proposed system. The proposed system consists mainly a quadrotor and

a 2-link robotic arm.

A lightweight robot arm that can carry a payload of 200g and has maximum reach of 25cm is designed.

The total weight of the manipulator, including actuators and gripper, is 200g. The quadrotor components

are chosen such that it can carry payload equals 500g (larger than the total manipulator weight and the

maximum payload).

Fig. 2 presents a sketch of the proposed Quadrotor Manipulation System with the relevant frames. The

frames satisfy the Denavit-Hartenberg (DH) convention [14]. The arm has two joints that are revolute.

The axis of the 1st one (z0) is parallel to the quadrotor x-axis (see Fig. 2). The axis of the other one

(z1) will be parallel to the quadrotor y-axis at the extended position. Hence, the pitch and roll rotation

of the end-effector can be achieved without moving the quadrotor horizontally. Consequently, with this

topology, the arm can manipulate objects in arbitrary pose.

This robot system is described by its position and orientation with respect to an earth-fixed reference

frame {I}, OI-X Y Z. The rotation matrix expressing the transformation from the earth-fixed frame {I}

to the body-fixed frame{B}, OB-x y z, can be defined as:

RB
I =


C(ψ)C(θ) S(ψ)C(θ) −S(θ)

−S(ψ)C(φ) + S(ψ)S(θ)C(ψ) C(ψ)C(φ) + S(ψ)S(θ)S(φ) C(θ)S(φ)

S(ψ)S(φ) + C(ψ)S(θ)C(φ) −C(ψ)S(φ) + S(ψ)S(θ)C(φ) C(θ)C(φ)

 (1)

, where φ, θ, and ψ are the Euler angles, and C(.) and S(.) are notations for cos(.) and sin(.) respectively.

If a small angles for φ and θ are assumed, then the corresponding time derivatives of Euler angles are equal

to the quadrotor angular velocity expressed in {B}. The DH table for the 2-Link manipulator are derived

and presented in [12] from which one can find the transformation matrices, AB0 , A0
1, and A1

2, between the

frames.
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2.1 Forward Kinematics

The position and orientation of the end-effector expressed in the inertial frame, {I}, are defined as ηe1 =

[xe, ye, ze]
T and ηe2 = [φe, θe, ψe]

T , respectively. The transformation matrix from the body frame to the

inertial frame is AIB and is given as:

AIB = RI
B ∗ transl(X, Y, Z) (2)

where RI
B is a rotation matrix expressed in (4x4) homogeneous form , and transl(X, Y, Z) is (4x4)

homogeneous transform matrix that describes the translation along X, Y and Z-axes of the inertial frame.

The total transformation matrix that relates the end-effector frame to the inertial frame is T I2 , which is

given by:

T I2 = AIBA
B
0 A

0
1A

1
2 (3)

Define the general form for this transformation matrix as a function of end-effector variables (ηe1 and ηe2),

as following:

Te =



r11 r12 r13 xe

r21 r22 r23 ye

r31 r32 r33 ze

0 0 0 1


(4)

By equating (3) and (4), expressions for the parameters of Te (rij, xe, ye, and ze; i, j = 1, 2, 3) can be found,

from which the values of the end-effector variables can be determined. Euler angles of the end-effector (φe,

θe and ψe) can be computed from the rotation matrix of Te.

2.2 Inverse Kinematics

The inverse kinematics problem consists of determining the quadrotor/joint space variables (X, Y , Z, ψ,

θ1, and θ2) as function of the operational coordinates (ηe1 and ηe2).

We aim for point-to-point control since we target end-effector control during picking and placing

operations (target positions are reset), so we put φ = θ = 0 in (3) and obtain the following:

T I2 =



C(ψ)S(θ2) + C(θ1)C(θ2)S(ψ) C(ψ)C(θ2)− C(θ1)S(ψ)S(θ2) S(ψ)S(θ1) X + L1C(θ1)S(ψ) + L2C(ψ)S(θ2) + L2C(θ1)C(θ2)S(ψ)

S(ψ)S(θ2)− C(ψ)C(θ1)C(θ2) C(θ2)S(ψ) + C(ψ)C(θ1)S(θ2) −C(ψ)S(θ1) Y − L1C(ψ)C(θ1) + L2S(ψ)S(θ2)− L2C(ψ)C(θ1)C(θ2)

−C(θ2)S(θ1) S(θ1)S(θ2) C(θ1) Z − L0 − L1S(θ1)− L2C(θ2)S(θ1)

0 0 0 1


(5)

Then, from (4) and (5), the inverse kinematics of the system can be derived. The inverse orientation has

three cases as following:
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CASE 1: Suppose that not both of r13 and r23 are zero. Then from (5), we deduce that sin(θ1) 6= 0

and r33 6= ±1. Then, cos(θ1) = r33 and sin(θ1) = ±
√

1− r2
33 and thus,

θ1 = atan2(±
√

1− r2
33, r33) (6)

and

ψ = atan2(±r13,∓r23) (7)

θ2 = atan2(±r32,∓r31) (8)

Thus, there are two solutions depending on the sign chosen for sin(θ1). If r13 = r23 = 0, then the fact that

Te is orthogonal implies that r33 = ±1.

CASE 2: If r13 = r23 = 0 and r33 = 1, then cos(θ1) = 1 and sin(θ1) = 0, so that θ1 = 0. In this case,

from the rotation matrix of (5), the sum θ2 + ψ can be determined as:

θ2 + ψ = atan2(r11, r12) (9)

We can assume any value for ψ and get θ2. Therefore, there are infinite number of solutions.

CASE 3: If r13 = r23 = 0 and r33 = -1, then cos(θ1) = -1 and sin(θ1) = 0, so that θ1 = π. In this

case, from (5), θ2 − ψ can be determined as:

θ2 − ψ = atan2(r11, r12) (10)

One can assume any value for ψ and get θ2. Therefore, there are infinite number of solutions. In cases 2

and 3, one may put ψ = 0 and get θ2. Finally, the inverse position is determined as following:

X = xe − (L1C(θ1)S(ψ) + L2C(ψ)S(θ2) + L2C(θ1)C(θ2)S(ψ)) (11)

Y = ye − (−L1C(ψ)C(θ1) + L2S(ψ)S(θ2)− L2C(ψ)C(θ1)C(θ2)) (12)

Z = ze − (−L0 − L1S(θ1)− L2C(θ2)S(θ1)) (13)

3. Dynamic Analysis

The equations of motion of the proposed robot are derived in details in [12]. For the manipulator dynamics,

Recursive Newton Euler method [15] is used to derive the equations of motion. Since the quadrotor is

considered to be the base of the manipulator, the initial linear and angular velocities and accelerations,
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used in Newton Euler algorithm, are that of the quadrotor expressed in body frame. Applying Newton

Euler algorithm to the manipulator considering that the link (with length L0) that is fixed to the quadrotor

is the base link, manipulator’s equations of motion can be obtained, in addition to, the forces and moments,

from manipulator, that affect the quadrotor.

The dynamical model of the quadrotor-manipulator system can be written as follows:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ − dex, (14)

where q = [X, Y, Z, φ, θ, ψ, θ1, θ2]T ∈ R8 is the vector of the generalized and redundant coordinates,

and there are two second order nonholonomic constraints [12] which can reduce the 8 variables into 6

independent coordinates, M ∈ R8x8 represents the symmetric and positive definite inertia matrix of the

combined system, C ∈ R8 is the matrix of Coriolis and centrifugal terms, G ∈ R8 is the vector of gravity

terms, τ ∈ R8 is the vector of the system applied forces and torques which are functions of the actuator’s

inputs (F1, F2, F3, F4, τm1 , and τm2), and dex ∈ R8 is the vector that represents the external disturbances.

We proposed a methodology for the identification process of the proposed system and implemented it

as described in details in [16]. The identified parameters are given in [17].

4. Controller Design

The desired values for the end-effector’s position (xed , yed and zed) and orientation (φed , θed and ψed) are

converted to the desired values of the quadrotor (Xd, Yd, Zd and ψd) and joints variables (θ1d and θ2d)

through the inverse kinematics that are derived in section 2. Next, these values are applied to a trajectory

generation algorithm which will provide Quintic polynomial trajectories [14] as the reference trajectories

for quadrotor/joint space. By using these types of trajectories for the joint space control, we can avoid the

undesirable system jerks. The control design criteria are to achieve system stability and zero position error

in the quadrotor/joint space and consequently for the end-effector’s desired position and orientation (ηe1

and ηe2), under the effect of picking and placing a payload, changing the operating region of the system,

and measurement noise.

4.1 Disturbance Observer-based Control

Disturbance Observer (DOb)-based controller is one of the most popular methods in the field of robust

motion control due to its simplicity and computational efficiency. The authors in [18, 19] present the

principles of DOb-based control system. In DOb based robust motion control systems, internal and

external disturbances are observed by DOb, and the robustness is simply achieved by feeding-back the

estimated disturbances in an inner-loop. Another controller is designed in an outer loop so that the

performance goals are achieved without considering internal and external disturbances. In [20–23], DOb-
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based control technique has been applied to robotic systems and showed efficient performance. In [24],

a Robust Internal-loop Compensator (RIC), which is a DOb based controller, is designed to achieve the

trajectory tracking in the quadrotor/joint space and provides satisfactory performance.

A block diagram of the DOb controller for the system described in (14) is shown in Fig. 3. Since

the vehicle (quadrotor) is an under-actuated system, i.e., only 4 independent control inputs are available

against the 6 DOF, the position and the yaw angle are usually the controlled variables, while pitch and roll

angles are used as intermediate control inputs for position control. Hence, the vector q can be rewritten

by defining the generalized coordinates ζ = [X, Y, Z, ψ, θ1, θ2]T and the redundant coordinates σ = [θ, φ]T .

Therefore, two controllers are designed; the first one is the ζ controller which will be used to generate the

reference values for the roll and pitch angles that are fed to the second one which is σ controller. However,

the response of the σ controller must be much faster than that of the quadrotor position controller such

that it can track the changes in the position controller. In this figure, Mn ∈ R8x8 is the system nominal

inertia matrix, τ and τ des are the robot and desired inputs, respectively, P = Diag([g1, ..., gi, ..., g8]) with

gi is the bandwidth of the ith variable of q, Q(s) = Diag([ g1
s+g1

, ..., gi
s+gi

, ..., g8
s+g8

]) ∈ R8x8 is the matrix of

the low pass filter of DOb, and τ dis represents the system disturbances. Let us assume that the velocity is

estimated by using a low pass filter, Qv(s) = Diag([
gv1
s+gv1

, ...,
gvi
s+gvi

, ...,
gv8
s+gv8

]) ∈ R8x8, with cut-off frequency

of Pv = Diag([gv1 , ..., gvi , ..., gv8 ]). Each of these variables is separated for ζ and σ such that Mnζ , Pζ , Qζ ,

and τζ for ζ controller and similarly for the σ controller. The system disturbance τ dis can be assumed as:

τ dis = (Mn −M(q))q̈ + τ s; τ s = C(q, q̇)q̇ +G(q) + dex (15)

The estimated disturbance τ̂ dis can be formulated from Fig. 3 as:

τ̂ dis = P̂ (s)(τ des −Mnq̈); P̂ (s) = Diag([
g1

s
, .,
gi
s
, .,
g8

s
]) (16)

After the disturbances are estimated and canceled by the inner-loop of DOb, the outer-loop external

controller can be used to achieve the desired performance of the system which becomes a double integrator

system. Concerning the outer-loop, define; KP and KD ∈ R8x8 be the proportional and derivative gains of

PD controllers, receptively, q̈des is the desired acceleration, and qref , q̇ref , and q̈ref are the references for

angle, velocity, and acceleration, respectively. The desired values σref for the intermediate controller are

obtained from the output of position controller, τζ , through the following relation:

σref =
1

τζ(3)

C(ψ) S(ψ)

S(ψ) −C(ψ)


τζ(1)

τζ(2)

 (17)
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Figure 3: Block diagram of DOb-base controller

4.2 Stability Analysis

To simplify the analysis, let us have the following assumptions; The system equation of motion both σ and

ζ are combined such that they form an equation of motion of robotic system, the system is not influenced

by external disturbances, dex = 0, as well as measurement noise and the velocity filter Qv(s), and the

bandwidths of DObs are the same; g1 = g2 = ... = g8 = gc. By applying the DOb-based robust motion

control algorithm, the dynamic model of the whole system will be:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ des + τ̂ dis (18)

The desired torque, as in Fig. 3, is

τ des = Mnq̈
des, (19)

where

q̈des = q̈ref +KP e+KDė; e = qref − q (20)

From (16 and 19) the estimated disturbance is:

τ̂ dis = gcMn(q̇des − q) (21)

Substituting from (19 and 21) into (18) will give:

M(q)q̈ + C(q, q̇)q̇ +G(q) = Mnq̈
des + gcMn(q̇des − q) (22)

The error dynamics for eD = q̇des − q̇ is:

M(q)ėD + C(q, q̇)eD + gcMneD = δ (23)
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where

δ = ∆M(q)q̈des + C(q, q̇)q̇des +G(q); ∆M(q) = M(q)−Mn, (24)

Equation (23) represents the error dynamics of DOb-based robust control of the quadrotor manipulation

system. Assuming the following Lyapunov function:

V =
1

2
eTDM(q)eD (25)

The time derivative of this function is:

V̇ = eTDM(q) ˙eD +
1

2
eTDṀ(q)eD (26)

Substituting from (23),

V̇ = eTDδ − geTDMneD +
1

2
eTD(Ṁ(q)− 2C(q, q̇))eD (27)

The dynamic equation of motion (14) posses several well known properties [25, 26]. These properties

will be used to complete the stability analysis and they are stated as follows:

λminM I ≤M(q) ≤ λmaxM I∥∥C(q, q̇)q̇∗
∥∥ ≤ λC‖q̇‖‖q̇∗‖∥∥G(q)

∥∥ ≤ λG

νT (Ṁ(q)− 2C(q, q̇))ν = 0 (28)

where Ṁ(q) − 2C(q, q̇) is a skew-symmetric matrix, ν ∈ R8 represents a 8-dimensional vector, and λminM ,

λmaxM , λC , and λG are positive real constants. Substituting from (28) into (27):

V̇ = eTDδ − geTDMneD (29)

Substituting from (24) in (29):

V̇ = −gceTDMneD − eTD∆M(q)q̈des − eTD(C(q, q̇)q̇des +G(q)) (30)

Form (28), a sufficient condition of the stability is:

V̇ ≤ gcλ
min
Mn
‖eD‖2

2 + λmax∆M

∥∥∥q̈des∥∥∥
2
‖eD‖2 + λC‖q̇‖2

∥∥∥q̇des∥∥∥
2
‖eD‖2 + λG‖eD‖2 ≤ 0 (31)
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Equation (31) shows that the time derivative of the Lyapunov function, V̇ , is negative outside of the

compact set ΥΓ{‖eD‖2 > Γ} where Γ is defined as follows:

Γ =
λmax∆M

∥∥∥q̈des∥∥∥
2

+ λC‖q̇‖2

∥∥∥q̇des∥∥∥
2

+ λG

gcλminMn

(32)

Therefore, all solutions that start outside of ΥΓ enter this set within a finite time, and remain inside

the set for future time. As a result, the error dynamics, eD, is uniformly ultimately bounded with respect

to ΥΓ.

Equation (26) and (27) show that as the bandwidth of DOb and / or nominal inertia matrix are

increased (i.e. Mn ≥ M(q)), the Lyapunov function decreases faster and the stability of the position

control system is improved. Therefore, we choose the Mnσ to Mσ ratio to be much higher than that

between Mnζ and Mζ such that the response speed of σ is much higher than that of ζ.

From the above derivations, we found that increasing the nominal inertia matrix Mn than the actual

one M(q) as well as DOb bandwidth, gi, will improve the system stability. However, there are constraints

on these values which are investigated in [27]. By assuming that the DOb will estimate and reject the

disturbances accurately, the following constraints on the DOb parameters can be derived:

ρP ≤ Pv
2
, ρ =

Mn

M
1

ρ
< 1 + P

KD

KP

+
KD

P
+
K2
D

KP

(33)

Equation (33) sets the constraints on the outer loop parameters and the robustness condition.

5. Simulation Results

The model of the considered robot and the control laws for both FMRLC and DOb techniques are simulated

in MATLAB. In order to simulate the measured data, the following assumption have been made: a normally

distributed measurement noise, with mean of 10−3 and standard deviation of 5× 10−3, has been added to

the measured signals.

Parameters of DOb-based control is given in Table 1. The design details and parameters of FMRLC

can be found in [17]. The two controllers are tested to stabilize and track the desired quadrotor/joint space

trajectories under the effect of picking a payload of value 150g at instant 15s and placing it at instant 55s.

The simulation results of both FMRLC and DOb based controllers in quadrotor/joint space are

presented in Fig. 4. Fig. 5 shows response of system in the task space (the actual end-effector position and

orientation can be found from the forward kinematics). These results show that both DOb and FMRLC

are able to track the desired trajectories, with different operating regions, and with picking, holding, and
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Table 1: Parameters for DOb-based control

Par. V alue Par. Value
Mnζ Diag{2, 2, 2, 0.5, 0.5, 0.5} MnσDiag{0.5, 0.5}
KPζ Diag{10, 10, 20, 10, 10, 10}KPσ Diag{7, 7}
KDζ Diag{7, 7, 15, 10, 10, 10} KDσ Diag{3, 3}
gi 1 gvi 100

placing a payload. Figs. 6 shows the control effort, the required thrust forces and manipulator torques, in

case of DOb and FMRLC respectively.

These results indicate that the FMRLC suffers from chattering problem which may either damage

the actuator or can not be achieved experimentally. Moreover, since the DOb is simpler than FMRLC,

the computation time for control laws of DOb is very small compared to that of FMRLC. In the simulation

model, the computation time of DOb is lower than that of FMRLC by 55%. Therefore, DOb is recommended

to be implemented in experimental work.
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Figure 4: The actual response in the quadrotor/joint space
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Figure 5: The actual response in the end-effector space

6. Conclusion

A new aerial manipulation robot called ”Quadrotor Manipulation System” is briefly described. This

proposed robot finds solutions for the limitations of the current aerial manipulation system. Kinematic

and dynamic analysis of the proposed system are carried out. A closed forms for system forward/inverse
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Figure 6: The required controller efforts

kinematics, are derived. However, the form for inverse kinematics is suitable for using in point-to-

point control in the task space. This is sufficient because we target end-effector control during picking

and placing operations. DOb-based control design is presented to control the proposed system. The

stability analysis is proved for this controller. The DOb-based controller is compared with previously

developed FMRLC controller. These controllers are tested to achieve trajectory tracking under the effect

of picking/placing a payload, changing the operating region, and the measurement noise. The system

is simulated using MATLAB/SIMULINK. Simulation results indicate the feasibility of the proposed

system and the effectiveness of the proposed kinematic analysis. In addition, the DOb technique has

low computation time. Unlike DOb, FMRLC provide chattering in the required control efforts. Therefore,

the DOb is highly recommended for implementation in real time to test experimentally the proposed

system which will be carried out in a future work.
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