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Abstract: This article introduces a novel quadrotor manipulation system that consists of 2-link manipulator with
unique topology attached to the bottom of a quadrotor. This new system presents a solution for the limitations
found in the current quadrotor manipulation system. Unlike the current system, the proposed system enables the
end effector to achieve an arbitrary position and orientation with minimum possible number of actuators/links.
System kinematics and dynamics are derived. A new closed form inverse kinematics algorithm is presented such
that a task space motion controller can be implemented. To study the feasibility of the proposed system, a quadrotor
with high enough payload, to add the 2-link manipulator, is designed and constructed. The system controller is
designed based on three control techniques: Feedback Linearization based PID (FL-PID), Direct Fuzzy Logic
Control (DFLC), and Fuzzy Model Reference Learning Control (FMRLC). Simulation framework is implemented
in MATLAB/SIMULINK based on real system parameters to emulate a realistic setup. These controllers are
tested under the effect of picking/placing a payload and changing the operating region. Results enlighten the
system feasibility, the superior performance of the FMRLC, and the efficiency of the proposed inverse kinematics
algorithm.

Keywords: Aerial manipulation, Dynamics, 2-link manipulator, Feedback Linearization, Fuzzy Logic Control,
Fuzzy Model Reference Learning Control, Kinematics.

1. INTRODUCTION

Quadrotor is one of the Unmanned Aerial Vehicles
(UAVs) which offer possibilities of speed and access
to regions that are otherwise inaccessible to ground
robotic vehicles. Quadrotor vehicles possess certain
essential characteristics, such as small size and cost,
Vertical Take Off and Landing (VTOL), and impressive
maneuverability, which highlight their potential for use
in search and rescue applications [1]. However, most
research on UAVs has typically been limited to monitoring
and surveillance.

Operation of the quadrotor can be illustrated using
Fig. 1. The quadrotor has four rotors mounted in cross
configuration. The propeller rotates by angular velocity
(Ω j with j = 1,2,3,4), and it produces a thrust force (Fj)
and drag moment (M j) which are directly proportional to
Ω2

j . Thus, by varying the speeds of each rotor, the flight
of the quadrotor is controlled. In order to rotate around
x-direction (φ ), thrust force of rotor 4 must be larger
than that of rotor 2 (i.e F4 > F2), and consequently, the
quadrotor will move in y-direction. Similarly for rotation
around y-direction (θ ), F3 > F1, and thus, motion in x-
direction will be occurred. As a result, the quadrotor is a

4 DOF system (i.e. it can do 4 independent motions).

Fig. 1. Schematic diagram of a typical Quadrotor

Due to the superior mobility of the quadrotor systems,
much interest is given to utilize them for aerial
manipulation. Previous research on aerial manipulation
can be divided into three approaches. In the first approach,
a gripper/tool is mounted at the bottom of an UAV to
transport a payload or interact with existing structures
[2, 3]. Accordingly, in these systems, not only the
attitude of the payload/tool is restricted to the attitude
of the UAV, but also the accessible range of the end-
effector is confined due to the fixed configuration of the
gripper/tool with respect to the UAV body and blades.
Consequently, the resulting aerial system has 4-DOF;
three translational DOF and one rotational DOF (Yaw),
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i.e., the gripper/tool cannot posses pitch or roll rotation
without moving horizontally. The second approach is to
suspend a payload with cables [4]. However, this approach
has a drawback that the movement of the payload cannot
be always regulated directly because the manipulation is
achieved using a cable which cannot always move the
payload as desired.

To overcome these limitations, a third approach is
developed in which an aerial vehicle is equipped with
a robotic manipulator. For example, in [5], a test
bed including two 4-DOF robot arms and a crane
emulating an aerial robot is proposed. When employing
the robotic manipulator, the dynamics of the robotic
manipulator is highly coupled with that of the aerial
vehicle, which should be carefully considered in the
controller design. Very few reports exist in the literature
that investigate the combination of aerial vehicle with
robotic manipulator. Kinematic and dynamic models of
the quadrotor combined with arbitrary multi-DOF robot
arm are derived using the Euler-Lagrangian formalism
in [6]. Moreover, the effects of manipulator, two 4-
DOF arms, on the quadrotor are simulated based on the
dynamic model which considers a quadrotor and robotic
arms separately. In [7], a quadrotor with 1-DOF robotic
arm is presented. In [8], a quadrotor with light-weight
manipulators, three 2-DOF arms, are tested, although the
movement of the manipulators is not explicitly considered
during the design of the PID controller. In [9], an aerial
manipulation using a quadrotor with a 2-DOF robotic arm
is presented but with certain topology that disable the
system from making an arbitrary position and orientation
of the end-effector. In this system, the axes of the
manipulator joints are parallel to each other and parallel
to one in-plane axis of the quadrotor. Thus, the system
cannot achieve orientation around the second in-plane axis
of the quadrotor without moving horizontally. In [10, 11],
the authors propose a new aerial manipulation system that
consists of 2-link manipulator with unique topology, with
two revolute joints whose axes are perpendicular to each
other and the axis of the first joint is parallel to one in-
plane axis of the quadrotor. Thus, the end-effector is able
to reach arbitrary position and orientation without moving
horizontally.

In this paper, a quadrotor is selected and a manipulator
with two revolute joints is designed. The whole system
is connected. Kinematic and dynamic models of system
are derived. Furthermore, novel solution to the problem
of motion control in the task space of the quadrotor
manipulation system are introduced. This inverse
kinematics analysis is utilized in order to achieve point-
to-point task space control of the proposed quadrotor
manipulation system based on three control techniques.

2. DESIGN OF THE PROPOSED SYSTEM

In this section, a complete design of the proposed
system is carried out. There are three aims of making such
design. The first aim is to prove that the proposed system
is realizable. The second aim is to get the geometrical and
inertia parameters from the CAD model of the designed
system, and use them in the designing and simulating the
control system. The third aim is to build the system and
make identification experiments to get the aerodynamic
parameters needed for simulation as well as the mapping
between the control signal and Pulse Width Modulation
(PWM) needed for real implementation.

The structure of the proposed system is shown in Fig. 2.
The axis of the first revolute joint (z0) that is fixed with
respect to the quadrotor is parallel to the body x-axis of
the quadrotor (see Fig. 3). The axis of the second joint
(z1) will be parallel to the body y-axis of quadrotor when
the first link is vertical. So, the pitching and rolling
rotation of the end effector is now possible independently
on the horizontal motion of the quadrotor. With this
new system, the capability of manipulating objects with
arbitrary location and orientation is achieved because the
DOF are increased from 4 to 6.

The proposed quadrotor manipulation system consists
mainly from two parts; the quadrotor and the manipulator.
During the reset of this section, design of each of them
is presented such that they can combined and perform the
required task.

Fig. 2. 3D CAD model of the New Quadrotor
Manipulation System

2.1. The Two-Link Manipulator
The design of this manipulator is based on light weight

and enough workspace under the quadrotor.
Our target is to design a light and simple 2 DOF

manipulator that can carry as much as possible of a
payload.

The arm components are selected, purchased and
assembled such that the total weight of arm is 200 g and
can carry a payload of 200 g. The arm components are:

• Three servo motors: HS-422 for gripper, HS-5485HB
for joint 1, and HS-422 for joint 2.
• Serial servo controller (SSC-32): Interface between

the main control unit and the servo motors.
• Motor accessories: Aluminum Tubing - 1.50 in,

Aluminum Multi-Purpose Servo Bracket Two Pack,
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Aluminum Tubing Connector Hub, and Aluminum
Long "C" Servo Bracket with Ball Bearings Two
Pack.

2.2. Quadrotor
The quadrotor components are selected, purchased and

assembled such that it can carry payload of 500 g (larger
than the total arm weight including the payload value).
The quadrotor components are:

• Airframe: Mechanical structure of an aircraft that
supports all the components, "ST450 metal folding".
• Rotor Assembly: Propeller (EPP1045), Electric

Motor (930KV ST2812), and the Electronic Speed
Controller (Lulin 30 A). It can produce approximately
400 g of thrust force.
• Microcontroller Unit: Implementation of

stabilization control algorithms, Arduino Mega 2560.
• Wireless Communication: Two XBee modules are

going to be used: one for the quadrotor and another
in the ground station computer that will handle
all telemetry for system identification and control
purposes, Zigbee Pro- 63 mW PCB Antenna Series2.
• Sensors: Providing information like aircraft attitude,

acceleration, altitude, global position. Inertial
Measurement Unit (10 DOF Multiwii ZMR), Sonar
unit (SRF04), and GPS unit (SKM53).
• Battery: Lithium Polymer Battery is used to power

both the electronics components and the motors.

3. KINEMATIC ANALYSIS

Fig. 3 presents a sketch of the Quadrotor-Manipulator
System with the relevant frames. The frames are assumed
to satisfy the Denavit-Hartenberg (DH) convention [12].

Fig. 3. Schematic of Quadrotor Manipulation System
frames

The rotational kinematics of the quadrotor is
represented through Euler angles. The can be completely
described by its position and orientation with respect to
reference earth-fixed and inertial frame {E}, OI-X Y

Z. Let define η1 = [X ,Y,Z]T as the vector of the body
position coordinates in the earth-fixed reference frame.
The vector η̇1 is the corresponding time derivative. If one
defines ν1 = [u,v,w]T as the linear velocity of the origin
of the body-fixed frame {B}, OB-x y z, whose origin is
coincident with the center of mass (CM), with respect to
the origin of the earth-fixed frame expressed in the body-
fixed frame, the following relation between the defined
linear velocities holds:

ν1 = RB
I η̇1 (1)

where RB
I is the rotation matrix expressing the

transformation from the inertial frame to the body-fixed
frame and it is given by

RB
I =

 CψCθ SψCθ −Sθ

−SψCφ +Sψ SθCψ CψCφ +Sψ Sθ Sφ Cθ Sφ

Sψ Sφ +Cψ SθCφ −Cψ Sφ +Sψ SθCφ CθCφ


(2)

Let define η2 = [φ ,θ ,ψ]T as the vector of body Euler-
angle coordinates in an earth-fixed reference frame. Those
are commonly named roll, pitch and yaw angles and
corresponds to the elementary rotation around X , Y and Z
in fixed frame. The vector η̇2 is the corresponding time
derivative (expressed in the inertial frame). Let define
ν2 = [p,q,r]T as body-fixed angular velocity. The vector
η̇2 is related to the body-fixed angular velocity by a proper
Jacobian matrix:

ν2 = Jvη̇2 (3)

The matrix Jv can be expressed in terms of Euler angles
as:

Jv =

1 0 −Sθ

0 Cφ Cθ Sφ

0 −Sθ CθCφ

 (4)

Note that C. and S. are short notations for cos(.) and
sin(.), respectively. The DH parameters for the 2-Link
Manipulator are derived and presented in [10].

The position and orientation of the end effector relative
to the body-fixed frame is easily obtained by multiplying
the following homogeneous transformation matrices AB

0 ,
A0

1, A1
2 that can be found from the DH method [12]. where

θ1 and θ2 are the manipulator joints’ angles.

3.1. Forward Kinematics
Let define the position and orientation of the end

effector expressed in the inertial frame, as ηee1 =
[xee,yee,zee]

T and ηee2 = [φee,θee,ψee]
T respectively.

The forward kinematics problem consists of
determining the operational coordinates (ηee1 and ηee2 ) of
the end effector, as a function of the quadrotor movements
(X , Y , Z, and ψ) as well as the motion of the manipulator’s
joints (θ1 and θ2). This problem is solved by computing
the homogeneous transformation matrix composed of
relative translations and rotations.
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The transformation matrix from the body frame to the
inertial frame AI

B which is:

AI
B = RI

B ∗ transl(X ,Y,Z) (5)

where RI
B is 4×4 matrix , and transl(X ,Y,Z) is 4x4 matrix

that describes the translation of X , Y and Z in the inertial
coordinates. The total transformation matrix that relates
the end effector frame to the inertial frame is T I

2 , which is
given by:

T I
2 = AI

BAB
0 A0

1A1
2 (6)

Define the general form for this transformation matrix as
a function of end effector variables (ηee1 and ηee2 ), as
following:

Tee =


r11 r12 r13 xee
r21 r22 r23 yee
r31 r32 r33 zee
0 0 0 1

 (7)

Equating (6) and (7), an expression for the parameters of
Tee (ri j, xee, yee, and zee; i, j = 1,2,3) can be found, from
which values of the end effector variables can determined.
Euler angles of the end effector (φee, θee and ψee) can be
computed from the rotation matrix of Tee as in [13].

3.2. Inverse Kinematics
The inverse kinematics problem consists of determining

the quadrotor movements (X , Y , Z, and ψ) as well as
the motion of the manipulator’s joints (θ1 and θ2) as
function of operational coordinates (ηee1 and ηee2 ) of the
end effector.

The inverse kinematics solution is essential for the
robot’s control, since it allows to compute the required
quadrotor movements and manipulator joints angles to
move the end effector to a desired position and orientation.

The rotations of the end effector can be parameterized
by using several methods one of them, that is chosen, is
the Euler angles [13].

Equation (6) can be expressed, after putting φ = θ =
0, since the target is to find inverse kinematics for reset
position, as following:

T I
2 =


Cψ Sθ2 +Cθ1Cθ2Sψ CψCθ2 −Cθ1Sψ Sθ2 Sψ Sθ1 X +L1Cθ1Sψ +L2Cψ Sθ2 +L2Cθ1Cθ2Sψ

Sψ Sθ2 −CψCθ1Cθ2 Cθ2Sψ +CψCθ1Sθ2 −Cψ Sθ1 Y −L1CψCθ1 +L2Sψ Sθ2 −L2CψCθ1Cθ2

−Cθ2Sθ1 Sθ1Sθ2 Cθ1 Z−L0−L1Sθ1 −L2Cθ2Sθ1

0 0 0 1


(8)

From (8) and (7), the inverse kinematics of the system
can be derived. According to the structure of (8), the
inverse orientation is carried out first followed by the
inverse position. The inverse orientation has three cases as
following: CASE 1: Suppose that not both of r13 and r23
are zero. Then from (8), we deduce that sin(θ1) 6= 0 and

r33 6= ±1. Then, cos(θ1) = r33 and sin(θ1) = ±
√

1− r2
33

and thus,

θ1 = atan2(±
√

1− r2
33,r33) (9)

and

ψ = atan2(±r13,∓r23) (10)

θ2 = atan2(±r32,∓r31) (11)

Thus, there are two solutions depending on the sign
chosen for sin(θ1). If r13 = r23 = 0, then the fact that Te is
orthogonal implies that r33 = ±1.

CASE 2: If r13 = r23 = 0 and r33 = 1, then cos(θ1) =
1 and sin(θ1) = 0, so that θ1 = 0. In this case, from the
rotation matrix of (8), the sum θ2 +ψ can be determined
as:

θ2 +ψ = atan2(r11,r12) (12)

We can assume any value for ψ and get θ2. Therefore,
there are infinite number of solutions.

CASE 3: If r13 = r23 = 0 and r33 = -1, then cos(θ1) =
-1 and sin(θ1) = 0, so that θ1 = π . In this case, from (8),
θ2−ψ can be determined as:

θ2−ψ = atan2(r11,r12) (13)

One can assume any value for ψ and get θ2. Therefore,
there are infinite number of solutions. In cases 2 and 3,
one may put ψ = 0 and get θ2. Finally, the inverse position
is determined from:

X = xee− (L1Cθ1 Sψ +L2Cψ Sθ2 +L2Cθ1Cθ2Sψ) (14)

Y = yee− (−L1CψCθ1 +L2Sψ Sθ2 −L2CψCθ1Cθ2)

(15)

Z = zee− (−L0−L1Sθ1 −L2Cθ2Sθ1) (16)

4. DYNAMIC ANALYSIS

In Fig. 4, a block diagram that shows the effect of
adding a manipulator to a quadrotor is presented.

Fig. 4. Effects of adding a manipulator to the quadrotor
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For the manipulator dynamics, Recursive Newton Euler
method [14] is used to derive the equations of motion.
Since the quadrotor is considered to be the base of the
manipulator, the initial linear and angular velocities and
accelerations, used in Newton Euler algorithm, are that
of the quadrotor expressed in body frame. Applying the
Newton Euler algorithm to the manipulator considering
that the link (with length L0) that is fixed to the quadrotor
is the base link, manipulator’s equations of motion can
be obtained, in addition to, the forces and moments, from
manipulator, that affect the quadrotor.

Let us define for each link i, the following variables:
ω i

i , angular velocity of frame i expressed in frame i,
ω̇ i

i , angular acceleration of frame i, vi
i, linear velocity of

the origin of frame i, v̇i
ci

, linear acceleration of the center
of mass of link i, v̇i

i, linear acceleration of the origin of
frame i, ri

i , the vector from the origin of frame (i− 1)
to the origin of link i, ri

ci
, the vector from the origin of

frame (i−1) to the center of mass of link i, gI , the vector
of gravity expressed in inertial frame I, z(i−1)

(i−1), is a unit

vector pointing along the ith joint axis and expressed in
the (i−1)th link coordinate system, R(i−1)

i , rotation matrix
from frame i to frame (i−1), Ii

i , the inertia matrix of link
i about its center of mass coordinate frame, and f i

(i,i−1) /
ni
(i,i−1) is the resulting force/moment exerted on link i by

link (i−1) at point O(i−1), where i = 1,2.
For the link 0:

ω
0
0 = R0

I ν2 (17)

ω̇
0
0 = R0

I ν̇2 (18)

v0
0 = R0

Bν1 +ω
0
0 × r0

0,

r0
0 = [0,L0,0]T (19)

v̇0
0 = R0

Bν̇1 + ω̇
0
0 × r0

0 +ω
0
0 × (ω0

0 × r0
0) (20)

For link i (i = 1,2), one can calculate the following
variables:

ω
i
i = Ri

i−1(ω
i−1
i−1 + θ̇izi−1

i−1) (21)

ω̇
i
i = Ri

i−1(ω̇
i−1
i−1 + θ̈izi−1

i−1 +ω
i−1
i−1 × θ̇izi−1

i−1) (22)

vi
i = Ri

i−1vi−1
i−1 +ω

i
i × ri

i (23)

v̇i
i = Ri

i−1v̇i−1
i−1 + ω̇

i
i × ri

i +ω
i
i × (ω i

i × ri
i) (24)

v̇i
ci
= v̇i

i + ω̇
i
i × ri

ci
+ω

i
i × (ω i

i × ri
ci
) (25)

The inertial forces and moments acting on link i are given
by:

F i
i =−miv̇i

ci
(26)

Ni
i =−Ii

i ω̇
i
i −ω

i
i × Ii

i ω
i
i (27)

The total forces and moments acting on link i are given
by:

f i
i,i−1 = f i

i+1,i−migi−F i
i (28)

ni
i,i−1 = ni

i+1,i +( f i
i + ri

ci
)× f i

i,i−1− ri
ci
× f i

i+1,i−Ni
i

(29)

f i−1
i,i−1 = Ri−1

i f i
i,i−1 (30)

ni−1
i,i−1 = Ri−1

i ni
i,i−1 (31)

where z0
0 = [0,0,1]T , r1

1 = [L1,0,0]T , r1
c1
= [−L1/2,0,0]T ,

z1
1 = [0,0,1]T , r2

2 = [L2,0,0]T , and r2
c2

= [−L2/2,0,0]T .
The gravity vector expressed in frames 1 and 2 are:

g2 = R2
I gI ,

gI = [0,0,−g]T (32)

g1 = R1
I gI (33)

where,

R1
I = R1

0R0
BRB

I (34)

R2
I = R2

1R1
I (35)

where mi and Li are the mass and length of link i.
The torques acting on joints 1 and 2 are finally given

by:

Tm1 = (n0
1,0)

T z0
0 +b1θ̇1 (36)

Tm2 = (n1
2,1)

T z1
1 +b2θ̇2 (37)

where, b1and b2 are friction coefficients.
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The interaction forces and moments of the manipulator
acting on the quadrotor expressed in body frame, FB

m,q and
MB

m,q are given as follows:[
FB

m,q
MB

m,q

]
=

[
RB

0 03x3
skew(PB

B0)R
B
0 RB

0

][
f 0
1,0

n0
1,0

]
(38)

where, skew(.) is skew symmetric matrix [12] of PB
B0 =

[0,0,−L0]
T , which is the position vector of the origin O0

relative to frame B. The interaction forces expressed in the
inertial frame are:

F I
m,q = RI

BFB
m,q (39)

Applying a payload of mass mp (see Fig. 5) will change
link 2’s parameters such as mass moments of inertia, total
mass of this link, and center of gravity of this link as
following:

Fig. 5. Schematic diagram of link 2 after adding the
payload

Ì2
2 = I2

2 +m2( `dCG2 −dCG2)
2 +mp(L2− `dCG2)

2 (40)

`dCG2 =
m2dCG2 +mpL2

m2 +mp
(41)

m̀2 = m2 +mp (42)

where CG2 is the point of center of gravity of link 2, I2
2

is the inertia matrix of link 2 about its center of mass
coordinate frame, m2 is mass of link 2, and (.̀) refers to
the value of the parameter after adding the payload.

Changing the point of center of gravity of link 2 will
change the r2

c2
(vector from the origin of frame {1} to the

center of mass of link 2 ) to be

r2
c2
= [−(L2− `dCG2),0,0]

T (43)

Substituting from (40, 42 and 43) in the dynamic
equations of the system, one can study the effect of
carrying the payload (mp).

The equations of motion of the manipulator are:

M1θ̈1 = Tm1 +N1 (44)

M2θ̈2 = Tm2 +N2 (45)

where, Tm1 and Tm2 are the manipulator-actuators’ torques.
M1, M2, N1, and N2 are nonlinear terms and they are
functions in the system states (η2,ν2, ν̇2, ν̇1,θ1,θ2, θ̇1, θ̇2).

The equations of motion of the quadrotor after adding
the forces/moments applied by the manipulator are:

mẌ = T (Cψ SθCφ +Sψ Sφ )+F I
m,qx (46)

mŸ = T (Sψ SθCφ −Cψ Sφ )+F I
m,qy (47)

mZ̈ =−mg+TCθCφ +F I
m,qz (48)

Ixφ̈ = θ̇ φ̇(Iy− Iz)− Irθ̇Ω+Ta1 +MB
m,qφ

(49)

Iyθ̈ = ψ̇φ̇(Iz− Ix)+ Irφ̇Ω+Ta2 +MB
m,qθ

(50)

Izψ̈ = θ̇ φ̇(Ix− Iy)+Ta3 +MB
m,qψ

(51)

where F I
m,qx , F I

m,qy , and F I
m,qz are the interaction forces

from the manipulator to the quadrotor in X ,Y , and
Z directions defined in the inertial frame, and MB

m,qφ
,

MB
m,qθ

, and MB
m,qψ

are the interaction moments from the
manipulator to the quadrotor around X , Y , and Z directions
defined in the body frame.

The variables in the above equations are defined as
following: m is the mass of the quadrotor. T is the
total thrust applied to the quadrotor from all four rotors.
τa1 , τa2 , and τa3 are the three input moments about the
three body axes,These moments are the rolling, pitching,
yawing moment about x-, y-, and z-axis of the body frame
respectively, and they are given as:


T

τa1

τa2

τa3

=


KF1 KF2 KF3 KF4

0 −dKF2 0 dKF4

−dKF1 0 dKF3 0
−KM1 KM2 −KM3 KM4


︸ ︷︷ ︸

G


Ω2

1
Ω2

2
Ω2

3
Ω2

4


(52)

d is the distance between the quadrotor center of mass
and the rotation axis of the propeller. KFj and KM j are the
thrust and drag coefficients of rotor j. Ω is given by:

Ω = Ω1−Ω2 +Ω3−Ω4 (53)
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Ir is the rotor inertia. I f is the inertia matrix of the
vehicle around its body-frame assuming that the vehicle
is symmetric about x-, y- and z-axis.

In order to test the feasibility of the proposed system,
a simulation environment will be built. Thus, there is a
need to find the real parameters of the system to make
the simulation results more accurate and reliable. The
authors in [15] describe a methodology to identify all
the parameters of the proposed system. The identified
parameters include the structure parameters and rotor
assembly parameters (KF and KM). These parameters will
be used in the system simulation and controller design
later. A CAD model is developed using SOLIDWORKS
to calculate the mass moments of inertia and all the
missing geometrical parameters. Three simple test rigs
are built and used to identify the relationship between the
motor input Pulse Width Modulation (PWM) signal and
the angular velocities, the thrust forces, and drag moments
of the rotors. A simple algorithm is implemented to
an IMU for estimating the attitude and altitude of the
quadrotor. Experimental set up is built to verify and test
the accuracy of these estimation and the identification
techniques. This is achieved by testing a controller
designed based on feedback linearization method to
stabilize the quadrotor attitude. The experimental results
show that the controller succeeds to achieve attitude
stabilization and hence prove the accuracy of the estimated
parameters. The identified parameters are given in Table
1.

Table 1. System parameters

Par. Value Unit Par. Value Unit
m 1 kg L2 85×10−3 m
d 223.5×10−3 m m0 30×10−3 kg
Ix 13.215×10−3 N.m.s2 m1 55×10−3 kg
Iy 12.522×10−3 N.m.s2 m2 112×10−3 kg
Iz 23.527×10−3 N.m.s2 Ir 33.216×10−6 N.m.s2

L0 30×10−3 m L1 70×10−3 m
KF1 1.667×10−5 kg.m.rad−2 KF2 1.285×10−5 kg.m.rad−2

KF3 1.711×10−5 kg.m.rad−2 KF4 1.556×10−5 kg.m.rad−2

KM1 3.965×10−7 kg.m2.rad−2KM2 2.847×10−7 kg.m2.rad−2

KM3 4.404×10−7 kg.m2.rad−2KM4 3.170×10−7 kg.m2.rad−2

5. CONTROLLER DESIGN

Quadrotor is an under-actuated system, because it has
four inputs (angular velocities of its four rotors) and six
variables to be controlled. By observing the operation
of the quadrotor, one can find that the movement in X-
direction is based on the pitch rotation, θ . Also, the
movement in Y - direction is based on the roll rotation, φ .
Therefore, motion along X- and Y -axes will be controlled

through controlling θ and φ .
Fig. 6 presents a block diagram of the proposed control

system. The desired values for the end effector’s position
(xeed , yeed and zeed ) and orientation (φeed , θeed and ψeed )
are converted to the desired values of the quadrotor
(Xd , Yd , Zd and ψd) and joints variables (θ1d and θ2d )
through the inverse kinematics that are derived in Sect. 3..
Next, these values are applied to a trajectory generation
algorithm which will be explained later. After that,
the controller block receives the desired values and the
feedback signals from the system and provides the control
signals (T , τa1 , τa2 , τa3 , Tm1 and Tm2 ). The inverse
of matrix G of the control mixer, in Fig. 6, is used to
transform the assigned thrust force and moments of the
quadrotor (the control signals) from the controller block
into assigned angular velocities of the four rotors.

Finally, The actual values of the quadrotor and joints are
converted to the actual values of the end effector variables
through the forward kinematics which are derived in
Sect. 3..

The control design criteria are to achieve system
stability and zero position error, for the movements in X ,
Y , Z, and ψ directions as well as for joints’ angles θ1 and
θ2 and consequently for the end effector variables (ηee1

and ηee2 ), under the effect of:

• Picking/placing a payload.

• Changing the operating region of the system.

Noting that in the task space, a position tracking is
implemented, and in the joint space, trajectory tracking
is required.

Fig. 6. Block diagram of the control system

5.1. Trajectory Generation

Quintic Polynomial Trajectories [12] are used as the
reference trajectories for X , Y , Z, ψ , θ1, and θ2. Those
types of trajectories have sinusoidal acceleration which is
better in order to avoid vibrational modes.

The desired values of end effector position and
orientation (Multi-region of operation and point-to-point
control) are used to generate the desired trajectories for X ,
Y , Z, φ , θ and ψ using the inverse kinematics and then the
algorithm for generating the trajectories.
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6. FEEDBACK LINEARIZATION CONTROLLER

This section discusses the control system design based
on the technique of feedback linearization [12, 16].
Feedback linearization transforms the nonlinear system
dynamics into a linear system. Then the control laws are
chosen so that zero tracking errors are achieved.

Fig. 7 presents the block diagram of this control
technique. In this Figure, the nonholonomic constraints
are used to determine the desired trajectories of θ and φ

from the desired trajectories of X , Y , Z, ψ , θ1, and θ2 and
their derivatives. Then feedback linearization controllers
are used to obtain a zero tracking errors for θ , φ , Z, ψ , θ1
and θ2.

The nonholonomic constraints define the coupling
between various states of the system. They are used to
determine the desired trajectories of θ and φ . From the
equations of the translation dynamics (46-48), one can
extract the expressions of these high order nonholonomic
constraints:

sin(φ) =
(Ẍ−F I

m,qx )Sψ−(Ÿ−F I
m,qy )Cψ√

(Ẍ−F I
m,qx )

2+(Ÿ−F I
m,qy )

2+(Z̈+g−F I
m,qz )

2

(54)

tan(θ) =
(Ẍ−F I

m,qx)Cψ +(Ÿ −F I
m,qy)Sψ

Z̈ +g−F I
m,qz

(55)

where F I
m,qx , F I

m,qy , and F I
m,qz are functions of the system

states and their derivatives.
Putting subscript d to all variables in (54) and (55), then

φd and θd can be obtained numerically.

Fig. 7. Details of the controller block in case of FL-PID

Z-Controller can be developed by expressing the
equation of motion in Z-direction in the following form:

(mZ̈ +mg−F I
m,qz)/(CφCθ ) = T (56)

The following control input will cancel out the
nonlinearities in the system;

T = (muz +mg−F I
m,qz)/(CφCθ ) (57)

where,

uZ = Z̈d +Kpz ez +Kdz ėz +Kiz

t∫
0

ezdt (58)

This control law leads to the exponential stable dynamics

ëz +Kdz ėz +Kpz ez +Kiz

t∫
0

ezdt = 0 (59)

which implies that the error, ez→ 0. Kp, Kd and Ki are the
controller parameters.

For φ , θ , ψ , θ1 and θ2 controllers, similar control laws
are chosen.

The system equations of motion and the control
laws are simulated using MATLAB/SIMULINK program.
The controller parameters of the feedback linearization
controller are given in Table 2. Those parameters are
tuned to get the required system performance. The
controller are tested to stabilize and track the desired
trajectories under the effect of picking a payload of value
150 g at instant 15 s and placing it at instant 65 s.

Table 2. FL-PID parameters

Par. Value Par. Value
[KpzKdz Kiz ] [16,8,0.01] [Kpψ

Kdψ
Kiψ ] [16,8,0.01]

[Kpφ
Kdφ

Kiφ ] [100,8,10] [Kpθ 1Kdθ 1Kiθ 1] [16,8,0.01]
[Kpθ

Kdθ
Kiθ ] [100,8,10] [ [Kpθ 2Kdθ 2Kiθ 2] [16,8,0.01]

The simulation results are presented in Fig. 10. These
results show that the controller design based on feedback
linearization can track the desired trajectories before
picking the payload, but at the instant of picking and then
holding the payload, it fails to track the desired trajectories
and the system becomes unstable even if the payload is
released. These results show that FL-PID provides a
good trajectory tracking capabilities but it fails to make
system stable against adding the payload. In addition,
due to the high nonlinearities and the complex dynamics
in the system, the control laws are very complex and
difficult to be implemented onboard (implementation in
real time). Therefore, their is a need for an adaptive
control technique to overcome the mentioned problems
with lower complexity.

7. DIRECT FUZZY LOGIC CONTROL

Recently, fuzzy logic control [17–19] has become an
alternative to conventional control algorithms to deal
with complex processes and combine the advantages of
classical controllers and human operator experience.

An intelligent controller, based on Direct Fuzzy Logic
Control (DFLC), for a quadrotor was designed and
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presented in [20, 21]. In this work, a modification of
this technique is done and used to control the quadrotor-
manipulator system to achieve the required objectives.

In Fig. 8, three fuzzy controllers are designed to control
the quadrotor’s roll (φ ), pitch(θ ) and yaw(ψ) angles,
denoted by FLCφ , FLCθ , and FLCψ , respectively, with
the former two serving as attitude stabilizers. Three fuzzy
controllers, FLCx, FLCy and FLCz, are designed to control
the quadrotor’s position. In addition, two fuzzy controllers
FLCθ1 and FLCθ2 are designed to control the two joints’
angles of the manipulator.

Fig. 8. Details of the controller block in case of DFLC

All eight fuzzy controllers have similar inputs that are:
The error e = (.̃) = (.)d − (.) , which is the difference
between the desired signal (.)d and its measured value (.).
This input is normalized to the interval [-1, +1]. The error
rate c, which is normalized to the interval [-3, +3].

In this control strategy, the desired pitch and roll angles,
θd and φd , are not explicitly provided to the controller.
Instead, they are continuously calculated by controllers
FLCx and FLCy in such a way that they stabilize the
quadrotor’s attitude. First, one can convert the error
and its rate of X and Y that is defined in the inertial
frame into their corresponding values defined in the body
frame. This conversion is done using the transformation
matrix defined in (2) assuming small angles (φ and θ ) as
following:

˙̃x = ˙̃X cosψ + ˙̃Y sin(ψ) (60)

˙̃y = ˙̃X sin(ψ)− ˙̃Y cosψ (61)

The input and output membership functions of each FLC
are tuned and chosen to be 3 symmetric and triangular.
The input and output scaling factors for the error, change
of error, and fuzzy output (Kei , Kci , and Kui ; i = x, y, z,
φ , θ , ψ , θ1, θ2) of each FLC are tuned such that required
performance is obtained.

The rule base of each FLC block is the same and
is designed to provide a PD-like fuzzy controller. A
Mamdani fuzzy inference method is used with a min-
max operator for the aggregation and the center of gravity
method for defuzzification.

There is a need to add an ’Offset’ value to the control
signal from the FLCZ(T ) in order to counter balance the
weight of the quadrotor. This value has to be tuned.

It is important to note that the fuzzy controllers are
designed in light of the knowledge acquired on the
system’s behavior and from its dynamic model. This
property sets the fuzzy controllers apart from conventional
controllers which depend on the plant’s mathematical
model [20].

Parameters of the DFLC are given in Table 3.
Those parameters are tuned to get the required system
performance.

The controller are tested to stabilize and track the
desired trajectories under the effect of picking a payload
of value 150 g at instant 15 s and placing it at instant 65 s.

The simulation results are presented in Fig. 10. These
results show that DFLC is able to track the desired
trajectories before, during picking, and holding the
payload. However, the DFLC fails to track the desired
trajectories during changing the region of operation
(operating point) because it needs to retune its scaling
factors. Thus, the DFLC succeeds to make system stable
against adding the payload. However, it fails to provides
a good trajectory tracking capabilities with different
operation regions. In addition, it suffers from the necessity
of calibrating and determining the offset value which
is affected by payload value and cannot be estimated
accurately. Moreover, considering the complexity of the
controller implementation in real time, DFLC is fairly
simple. Therefore, their is a need for high performance
and more robust adaptive control technique to overcome
these problems.

Table 3. DFLC parameters

Par. Value Par. Value
[Kex Kcx Kux ] [.007, .05,5] [KeyKcyKuy ] [.007, .05,5]
[Kez Kcz Kuz ] [1, .3,16.5] [Keψ

Kcψ
Kuψ

] [1, .5,0.2]
[Keφ

Kcφ
Kuφ

] [.5, .5,9] [Keθ1
Kcθ1

Kuθ1
] [2, .05,4]

[Keθ
Kcθ

Kuθ
] [.5, .5,10] [ [Keθ2

Kcθ2
Kuθ2

] [5, .3,0.3]
O f f set 7.85 N

8. FUZZY MODEL REFERENCE LEARNING
CONTROL

In this section, an adaptive fuzzy logic control
based on "Fuzzy Model Reference Learning Controller"
(FMRLC) is designed to control the proposed quadrotor
manipulation system. This control technique is presented
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in details in [17, 23–26].
The main drawback of fuzzy controllers is the large

amount of parameters to be tuned. Also, the designed
DFLC needs to retune its parameters in each operation
region. Moreover, the fuzzy controller constructed
for the nominal plant may perform inadequately if
significant and unpredictable plant parameter variations,
or environmental disturbances occur [22, 23].

In this work, a learning control algorithm is used to
resolve some of these fuzzy controller design issues.
This algorithm employs a reference model to provide
a performance feedback for tuning a fuzzy controller’s
knowledge-base.

The control system design is the same as in Fig. 8
by replacing each of the FLCz, FLCφ , FLCθ , FLCψ ,
FLCθ1 and FLCθ2 block with the block shown in Fig. 9.
However, there is no need for the offset value that is
used in Fig. 8 because the FMRLC can compensate the
quadrotor weight. The blocks of FLCx and FLCy are still
the same because there is no need for adaptation here,
since these blocks are used to map the relation between
the error in X and Y directions into the required roll and
pitch motions.

The functional block diagram for the FMRLC is shown
in Fig. 9.

Fig. 9. Functional block diagram for the FMRLC

8.1. The Fuzzy Controller
The plant in Fig. 9 has output y (which can be Z, φ , θ ,

ψ , θ1 or θ2), and an input u (which can be T , τa1 , τa2 , τa3 ,
Tm1 or Tm2 ). The scaling controller gains ge, gc, and gu for
the error, e, change in error, c, and controller output, u, are
used respectively, such that the universe of discourse of all
inputs and outputs are the same and equal to [-1, 1].

The membership functions are chosen to be 11
symmetric triangular-shaped functions for each controller
input. The fuzzy sets for the fuzzy controller output
are assumed to be symmetric and triangular-shaped with
a base width of 0.4, and all centered at zero on the
normalized universe of discourse. They are what the

FMRLC will automatically tune through the learning
mechanism. Thus, the initial rule base elements are set
to zeros.

The centers of the input membership functions are
tuned using the auto-tuning mechanism shown in Fig. 9.
Mamdani fuzzy inference method is used with a min-
max operator for the aggregation. The standard center of
gravity is used as a defuzzification technique.

8.2. The Reference Model
The reference model is used to quantify the desired

performance. A 1st order model is chosen as the reference
model:

ym(s)
r(s)

=
1

τciS+1
(62)

where ym(s) is the output response of the reference
system, and r(s) is the desired value of the plant. τci

(i = z, φ , θ , ψ , θ1, and θ2) is the time constant of the
reference model. The performance of the overall system
is controlled with respect to the reference model by the
learning mechanism by generating an error signal:

ye = ym− y (63)

8.3. The Learning Mechanism
The learning mechanism tunes the rule-base of the

direct fuzzy controller so that the closed-loop system
behaves like the reference model. Based on ye, the
learning mechanism will take the required action. It
consists of two parts, fuzzy inverse model and knowledge-
base modifier.

The Fuzzy Inverse Model
The fuzzy inverse model performs the function of

mapping ye to changes in the process inputs p to make
ye tends to zero.

The input to the fuzzy inverse model includes the error
(ye) and change in error (yc). Also, it has scaling gains,
gye , gyc and gp.

Each input and output is represented by 11 symmetric
and triangular-shaped membership functions. The rule-
base for the fuzzy controller has rules of the form:

IF ye is Y k
e AND yc is Y s

c T HEN p is Pm

where Y k
e /Y s

c denote the kth /sth linguistic value associated
with ye/yc and Pm denotes the consequent linguistic value
associated with p.

Denoting the center of the output membership function
for this rule ck,s. The rule base array shown in Table 4
is used for the fuzzy inverse model. The entries of the
table are the center values of output membership functions
ck,s. Mamdani fuzzy inference method is used with a min-
max operator for the aggregation and the standard center
of gravity is used as defuzzification technique.
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Table 4. Knowledge-base array for the Fuzzy Inverse
Model

Y s
c

ck,s -5 -4 -3 -2 -1 0 1 2 3 4 5
-5 -1 -1 -1 -1 -1 -1 -0.8 -0.6 -0.4 -0.2 0
-4 -1 -1 -1 -1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
-3 -1 -1 -1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
-2 -1 -1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-1 -1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Y k
e 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1
2 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1 1
3 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1 1 1
4 -0.2 0 0.2 0.4 0.6 0.8 1 1 1 1 1
5 0 0.2 0.4 0.6 0.8 1 1 1 1 1 1

The Knowledge-Base Modifier
Based on the information about the necessary changes,

p, the knowledge-base modifier changes the rule-base of
the fuzzy controller so that the previously applied control
action will be modified by the amount p.

Assume the previously computed control signal u(t −
1), and assume that it contributed to the present good
or bad system performance. By modifying the fuzzy
controller’s knowledge-base, one may force the fuzzy
controller to produce a desired output u(t − 1) + p(t),
which should be put in at time (t−1) to make ye smaller.
Then, in the next time, if similar values for the error and
change in error are obtained, then the input to the plant
will be one that will reduce the error between the reference
model and plant output.

Knowledge-base modification is performed by shifting
the centers bm of the membership functions of the output
that are associated with the fuzzy controller rules that
contributed to the previous control action u(t − 1). It
works as following:

• Define "active set" of rules at time (t−1) to be all the
rules in the fuzzy controller whose membership value
is:

µi(e(t−1),c(t−1))> 0 (64)

• For all rules in the active set, use (65) to modify the
output membership function centers.

bm(t) = bm(t−1)+ p(t) (65)

Rules that are not in the active set do not have their output
membership functions modified.

8.4. Auto-Tuning Mechanism
With the auto-tuning for the input scaling gains of

the fuzzy controller, the centers of the input membership
functions are tuned such that the control surface is

properly focused on the region that describes the system
activity.

An auto-tuning mechanism is used in [24] to tune ge
and gc gains online as following:

Let the maximum of each fuzzy controller inputs (e,c)
over a time interval of the last Ta seconds be denoted by
maxTa{e} and maxTa{c}. Then this maximum value is
defined as the gain of each input e and c so that,

ge =
1

maxTa{e}
and gc =

1
maxTa{c}

(66)

Parameters of the FMRLC are given in Table 5. The
controller are tested to stabilize and track the desired
trajectories under the effect of picking a payload of value
150 g at instant 15 s and placing it at instant 65 s. The
simulation results are presented in Fig. 10. These results
show that FMRLC is able to track the desired trajectories
(with different operating regions) before, during picking,
holding, and placing the payload with zero tracking error.

Table 5. FMRLC Parameters

Par./Val. Z φ θ ψ θ1 θ2
ge−initial 0.2 2 2 0.3 1/60 1/60
gc−initial 1/10 1 1 1/30 1/1000 1/1000

gu 16.5 0.93 0.93 0.19 0.63 0.32
gye 1/60 1/.1 1/.1 1/.1 1/2 1/1.5
gyc 1/15 1/.1 1/.1 1/.1 1/2 1/1.5
gp 3 0.0029 0.0029 0.0019 0.0063 9.6e-4

τc(s) 0.03 0.01 0.01 0.01 0.1 0.1
Ta(s) 0.1 0.05 0.05 0.05 0.1 0.1
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Fig. 10. Actual response of FL-PID, DFLC, and FMRLC
techniques in the quadrotor/joint space

The end effector position and orientation can be found
from the forward kinematics (see Fig. 11).
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Fig. 11. Actual response of FMRLC technique in the task
space

From the above discussion and results, the following
items can be concluded about the performance of FMRLC
technique:

• FMRLC technique succeeds to make system stable
against adding/releasing the payload with high
accuracy, in addition to, provides a good trajectory
tracking capabilities with different operation regions.
• Considering the complexity of the controller

implementation in real time, FMRLC is moderate.
It is more complicated than DFLC and simpler than
feedback linearization.
• Therefore, FMRLC technique is able to achieve the

performance objective of the system.

9. CONCLUSIONS

Design, kinematics, dynamics and control of a novel
aerial manipulation system, with unique topology, are
presented. The new proposed system adds new features
to the current aerial manipulation systems. New inverse
kinematics is derived and utilized to achieve point-
to-point task space control. The system controller
was designed based on FL-PID, DFLC, and FMRLC
techniques. The system equations of motion and the
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control laws are simulated using MATLAB/SIMULINK
program. The FL-PID fails to make system stable against
adding the payload, and it suffers from complex real
time implementation. The DFLC technique succeeds
to make system stable against adding/releasing the
payload. However, it fails to provides a good trajectory
tracking capabilities with different operation regions.
The FMRLC succeeds to make system stable against
adding/releasing the payload with high accuracy. In
addition, it provides a good trajectory tracking capabilities
with different operation regions. Simulations results show
the effectiveness of the inverse kinematics analysis and
indicate that the FMRLC has a superior performance
compared with that of both FL-PID and DFLC. As a
future work, measurement system will be implemented to
accurately measure the system states. Furthermore, the
proposed robot and the motion control algorithms will be
tested experimentally.
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