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A New 6-DOF Quadrotor Manipulation System:
Design, Kinematics, Dynamics and Control

Mohamed Fanni and Ahmed Khalifa

Abstract—The research on aerial manipulation has been
increased rapidly in recent years. In the previous work, a
manipulator or a gripper is attached to the bottom of a quadrotor
to facilitate the interaction with the environment. However, the
previously introduced systems suffer from either limited end-
effector DOFs or small payload capacity. In this article, we
investigate a quadrotor with a 2-DOF manipulator that has a
unique topology to enable the end-effector to track a desired 6-
DOF trajectory with minimum possible actuators. Firstly, the
proposed system is designed and modeled. However, such a
system produces complexity to its inverse kinematics and control.
Secondly, novel inverse kinematics analysis which requires
a solution of complicated algebraic/differential equations is
presented. Thus, an algorithm is developed to get an approximate
solution of these equations, and its accuracy is verified. Thirdly,
in order to solve the control problem, a simplified form of
the nonholonomic constraints is utilized with a robust control
technique. Fourthly, the controller stability is proved. Finally,
experiments are conducted to validate the feasibility and the
efficiency of the proposed system.

Index Terms—Aerial Manipulation, Quadrotor, Inverse
Kinematics, Dynamic Modeling, Disturbance Observer.

I. INTRODUCTION

Quadrotor system is one of the Unmanned Aerial Vehicles
(UAVs) which offer possibilities of speed and access to regions
that are otherwise inaccessible to ground robotic vehicles.
Quadrotor vehicles possess certain essential characteristics,
such as small size and cost, Vertical Take Off and Landing
(VTOL), performing slow precise movements, and impressive
maneuverability, which highlight their potential for use in
vital applications [1]. However, most research on UAVs
has typically been limited to monitoring and surveillance
applications where the objectives are limited to “look” and
“search” but “do not touch”. Due to their superior mobility,
much interest is given to utilize them for aerial manipulation.
Previous research on aerial manipulation can be divided into
three approaches.

In the first approach, a gripper or a tool is installed at the
bottom of an UAV to transport a payload or interact with
existing structures. In [2]–[4], a quadrotor with a gripper
is used for transporting blocks and to build structures. In
[5], a force sensor is used to apply a normal force to a
surface. Accordingly, not only the attitude of the payload/tool
is restricted to the attitude of the UAV, but also the accessible
range of the end-effector is confined due to the fixed
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configuration of the gripper/tool with respect to the UAV
body and blades. Consequently, the resulting aerial system
has 4 DOFs; three translational DOFs and one rotational
DOF (Yaw), i.e., the gripper/tool cannot posses pitch or roll
rotation without moving horizontally. The second approach is
to suspend a payload with cables. In [6], an adaptive controller
is presented to avoid swing excitation of a payload. In [7]–[9],
specific attitude and position of a payload is achieved using
cables connected to one or three quadrotors. However, this
approach has a drawback that the movement of the payload
cannot be always regulated directly because manipulation is
achieved using a cable which cannot always drive the motion
of the payload as desired.

To overcome these limitations, a third approach is developed
in which an aerial vehicle is equipped with a robotic
manipulator that can actively interact with the environment.
For example, in [10], a test bed including two 4-DOF robot
arms and a crane emulating an aerial robot is proposed. By
combining the mobility of the aerial vehicle with the versatility
of a robotic manipulator, the utility of mobile manipulation
can be maximized. When employing the robotic manipulator,
the dynamics of the robotic manipulator are highly coupled
with that of the aerial vehicle, which should be carefully
considered in the controller design. Also, an aerial robot needs
to tolerate the reaction forces from the interactions with the
object or external environment. These reaction forces may
affect the stability of an aerial vehicle significantly. Very
few reports exist in the literature investigate the combination
of aerial vehicle with robotic manipulator. Kinematic and
dynamic models of the quadrotor combined with arbitrary
multi-DOF robot arm are derived using the Euler-Lagrangian
formalism in [11]. Based on that, simulation results using the
Cartesian impedance control for the combined system with 3-
DOF robotic arm is presented in [12]. In addition, the effects of
manipulators, two 4-DOF arms, on the quadrotor are simulated
based on the dynamic model which considers a quadrotor and
robotic arms separately, treating the arms as the disturbance
to the quadrotor control loop. In [13], a quadrotor with light-
weight manipulators, three 2-DOF arms, are tested, although
the movement of the manipulators is not explicitly considered
during the design of the PID controller. In [14], an aerial
manipulation using a quadrotor with a 2-DOF robotic arm
is presented but with certain topology that disable the system
from making arbitrary position and orientation of the end-
effector. In this system, the axes of the manipulator joints are
parallel to each other and parallel to one in-plane axis of the
quadrotor. Thus, the system cannot achieve orientation around
the second in-plane axis of the quadrotor without moving
horizontally.



2

From the above discussion, the systems that use a gripper
suffer from the limited allowable DOFs of the end-effector.
The other systems have a manipulator with either two DOFs
but in certain topology that disables the end-effector to track
arbitrary 6-DOF trajectory, or more than two DOFs which
decreases greatly the possible payload carried by the system.

In [15] and [16], the authors propose a new aerial
manipulation system that consists of 2-link manipulator, with
two revolute joints whose axes are perpendicular to each other
and the axis of the first joint is parallel to one in-plane
axis of the quadrotor. Thus, the end-effector is able to reach
arbitrary position and orientation without moving horizontally.
However, the proof that this system can perform any desired
trajectory in the task space has not been achieved yet due to the
resulted complications in the inverse kinematics and control.
This system is similar to a serial manipulator with eight joints,
two of them are passive.

This system opens new application area for robotics. Such
applications are inspection, maintenance, firefighting, service
robot in crowded cities to deliver light stuff such as post
mails or quick meals, rescue operation, surveillance, demining,
performing tasks in dangerous places, or transportation in
remote places.

To sum up the main contributions of this article,
• New quadrotor-based aerial manipulator, which utilizes

a 2-link robotic arm with unique topology such that
the end-effector can track a desired 6-DOF trajectory, is
designed. This system is non-redundant and use minimum
possible number of actuators and links such that we can
maximize the payload carried by the system and hence
enlarge its practical use.

• Novel inverse kinematics analysis, which is based on
complex set of nonlinear differential and algebraic
equations, is presented and utilized to prove the end-
effector ability to track arbitrary 6-DOF trajectory that
lays within the capability of the used actuators.

• Design of a robust motion control scheme with rigorous
stability analysis to track the desired 6-DOF trajectory.

In order to emulate a realistic setup, a simulation framework is
developed to demonstrate the feasibility and the effectiveness
of the approach in the presence of picking/placing a payload,
uncertainties and sensor noise, and it is based on a real
parameters obtained from an identification process of the
considered system.

II. DESCRIPTION AND DESIGN OF THE PROPOSED SYSTEM

3D CAD model of the proposed system is shown in Fig. 1.
The system consists mainly of two parts; the quadrotor and the
manipulator. Fig. 2 presents a sketch of the proposed system
with the relevant frames which indicates the unique topology
that permits the end-effector to achieve arbitrary pose. The
frames are assumed to satisfy the Denavit-Hartenberg (DH)
convention [17]. The manipulator has two revolute joints. The
axis of the first revolute joint (z0), that is fixed to the quadrotor,
is parallel to the body x-axis of the quadrotor (see Fig. 2).
The axis of the second joint (z1) is perpendicular to the axis
of the first joint and will be parallel to the body y-axis of

Figure 1: 3D CAD model of the proposed system

Figure 2: Schematic of Quadrotor Manipulation System with
relevant frames

the quadrotor at home (extended) configuration. Thus, the
pitching and rolling rotation of the end-effector is now possible
independently from the horizontal motion of the quadrotor.
Hence, with this new system, the capability of manipulating
objects with arbitrary location and orientation is achieved. By
this non-redundant system, the end-effector can achieve 6-
DOF motion with minimum number of actuators/links which
is an important factor in flight. The proposed system is
distinguished from all other previous systems in the literature
by having maximum mobility with minimum weight. The
resulted complexity of the inverse kinematics and control are
handled latter to prove the capability of the end-effector to
track the reference 6-DOF trajectory.

The quadrotor components are selected such that it can carry
an additional weight equals 500 g (larger than the total arm
weight and the maximum payload). Asctec pelican quadrotor
[18] is used as the quadrotor platform.

A lightweight manipulator that can carry a payload of 200
g and has a maximum reach of 22 cm is deigned. The arm
components are selected, purchased and assembled. Its weight
is 200 g. It has a Flight Control Unit (FCU) “asctec Autopilot”
as well as a modular structure which enables us to easily
mount different components like computer boards, position
sensors, and the robotic arm with its avionics. The FCU has
an Inertial Measurement Unit (IMU) which provides the body
accelerations, body angular velocities, magnetic compass, and
the estimated attitude of the vehicle. The 6-DOF quadrotor
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(a) Deflection analysis (b) Stress analysis

Figure 3: Manipulator’s structure analysis

state estimation can be obtained via the onboard IMU and
monocular vision data fusion [19].

The arm components are: Three DC motors; HS-422 (Max
torque = 0.4 N.m) for the gripper, HS-5485HB (Max torque =
0.7 N.m) for joint 1, and HS-422 (Max torque = 0.4 N.m) for
joint 2. Motor’s Driver (SSC) is used as an interface between
the main control unit and the motors. Wireless PS2 R/C is
used to send commands to manipulator’s motors remotely.
The manipulator structure accessories are; Aluminum Tubing
- 1.50 in diameter, Aluminum Multi-Purpose Servo Bracket,
Aluminum Tubing Connector Hub, and Aluminum Long ’C’
Servo Bracket with Ball Bearings [20]. An Arduino board
(Mega 2560) is utilized as an interface between the low level
peripherals (such as ultrasonic sensor, PS2 wireless receiver,
and motor driver (SSC)), and the onboard computer. The
angular position and velocity of the joints can be obtained
from an encoder that is connected to each joint’s motor.

The safety of this design, with respect to the strength
and rigidity, is checked through finite element analysis using
ANSYS software (see Fig. 3). A 250 g force is applied at
the gripper end, while the arm end (i.e., point at which the
arm is connect to the body center of the quadrotor) is fixed.
From these figures, the maximum deflection is about 0.6 mm
which is smaller than the allowable value which equals 1 mm.
In addition, the maximum stress of the structure is 113 MPa
which is smaller than the yield strength of aluminum alloy
which is 270 MPa. Also, the bearings and gripper are selected
to sustain the loads. Therefore, this design is safe.

III. FORWARD KINEMATICS

In this section, position and velocity kinematics analysis are
presented. Let Σb, Ob- xb yb zb, denotes the vehicle body-fixed
reference frame with origin at the quadrotor center of mass,
see Fig. 2. Its position with respect to the world-fixed inertial
reference frame, Σ, O- x y z, is given by the (3× 1) vector
pb = [x y z]T , while its orientation is given by the rotation
matrix Rb:

Rb =

CψCθ SφSθCψ − SψCφ SψSφ + CψSθCφ
SψCθ CψCφ + SψSθSφ SψSθCφ − CψSφ
−Sθ CθSφ CθCφ

 ,
(1)

where Φb=[ψ θ φ]T is the triple ZY X yaw-pitch-roll angles.
Note that C. and S. are short notations for cos(.) and sin(.),
respectively. Let us consider the frame Σe, O2- x2 y2 z2,
attached to the end-effector of the manipulator, see Fig. 2.

Thus, the position of Σe with respect to Σ is given by

pe = pb +Rbp
b
eb, (2)

where the vector pbeb describes the position of Σe with respect
to Σb expressed in Σb. The orientation of Σe can be defined
by the rotation matrix

Re = RbR
b
e, (3)

where Rbe describes the orientation of Σe w.r.t Σb. The
forward kinematics problem consists of determining the
operational coordinates χe = [xe ye ze ψe θe φe]

T ,
as a function of the vehicle/joint space coordinates q =
[x y z ψ θ φ θ1 θ2]T . For solving the forward kinematics, the
inputs are 8 variables, q, and the output are 6 variables, χe,
obtained from 6 algebraic equations. The end-effector position
can be found from (2). Euler angles of the end-effector Φe can
be computed from the rotation matrix of Re, from (3).

In the rest of this section, the velocity kinematics analysis
is discussed. The linear velocity ṗe of Σe in the world-fixed
frame is obtained by the differentiation of (2) as

ṗe = ṗb − Skew(Rbp
b
eb)ωb +Rbṗ

b
eb, (4)

where Skew(.) is the (3×3) skew-symmetric matrix operator
[17], while ωb is the angular velocity of the quadrotor
expressed in Σ. The angular velocity ωe of Σe is expressed as

ωe = ωb +Rbω
b
eb, (5)

where ωbeb is the angular velocity of the end-effector relative
to Σb and is expressed in Σb.

Let Θ = [θ1 θ2]T be the (2×1) vector of joint angles of the
manipulator. The (6× 1) vector of the generalized velocity of
the end-effector with respect to Σb, vbeb = [ṗbTeb ω

bT
eb ]T , can be

expressed in terms of the joint velocities Θ̇ via the manipulator
Jacobian, Jbeb, [21] such that

vbeb = JbebΘ̇ (6)

From (4) and (5), the generalized end-effector velocity, ve =
[ṗTe ωTe ]T , can be expressed as

ve = Jbvb + JebΘ̇, (7)

where vb = [ṗTb ωTb ]T , Jb =

[
I3 −Skew(Rbp

b
eb)

O3 I3

]
, Jeb =[

Rb O3

O3 Rb

]
Jbeb,

where Im and Om denote (m×m) identity and (m×m) null
matrices, respectively. If the attitude of the vehicle is expressed
in terms of yaw-pitch-roll angles, then (7) will be

ve = JbQbχb + JebΘ̇, (8)

with χb =

[
pb
Φb

]
, Qb =

[
I3 O3

O3 Tb

]
, where Tb describes the

transformation matrix between the angular velocity ωb and the
time derivative of Euler angles Φ̇b, and it is given as

Tb(Φb) =

0 −Sψ CψCθ
0 Cψ SψCθ
1 0 −Sθ

 . (9)
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Since the vehicle is an under-actuated system, i.e., only 4
independent control inputs are available for the 6-DOF system,
the position and the yaw angle are usually the controlled
variables. Hence, it is worth to define ζ = [x y z ψ θ1 θ2]T as
the controlled variables and σb = [θ φ]T as the intermediate
variables.

IV. DYNAMIC MODEL

The equations of motion of the proposed robot have been
derived by us in details in [15]. Applying Newton Euler
algorithm [21] to the manipulator considering that the link
(with length L0) that is fixed to the quadrotor is the base
link, one can get the equations of motion of the manipulator
as well as the interaction forces and moments between the
manipulator and the quadrotor. The effect of adding a payload
to the manipulator will appear in the parameters of its end
link, link 2, (e.g. mass, center of gravity, and inertia matrix).
For the system structure, we assume:

Assumption 1. The quadrotor body is rigid and symmetric.
The manipulator links are rigid.

The equations of motion of the manipulator are

M1(q)θ̈1 +N1(q, q̇, q̈) = τm1
, (10)

M2(q)θ̈2 +N2(q, q̇, q̈) = τm2
, (11)

where, τm1
and τm2

are the manipulator actuators’ torques.
M1(q), M2(q), N1(q, q̇, q̈), and N2(q, q̇, q̈) are nonlinear terms
and they are functions of the system states.

The Newton Euler method are used to find the equations of
motion of the quadrotor after adding the forces/moments from
the manipulator. They are given by (12-17).

mẍ = T (CψSθCφ + SψSφ) + Fm,qx (12)

mÿ = T (SψSθCφ − CψSφ) + Fm,qy (13)

mz̈ = −mg + TCθCφ + Fm,qz (14)

Ixφ̈ = θ̇φ̇(Iy − Iz)− Ir θ̇Ω + Ta1 +M b
m,qφ

(15)

Iy θ̈ = ψ̇φ̇(Iz − Ix) + Irφ̇Ω + Ta2 +M b
m,qθ

(16)

Izψ̈ = θ̇φ̇(Ix − Iy) + Ta3 +M b
m,qψ

(17)

where Fm,qx , Fm,qy , and Fm,qz are the interaction forces
from the manipulator to the quadrotor in x,y, and z directions
expressed in the inertial frame and M b

m,qφ
, M b

m,qθ
, and

M b
m,qψ

are the interaction moments from the manipulator to
the quadrotor around xb, yb, and zb directions.

The variables in (12-17) are defined as follows: m is the
mass of the quadrotor. Each rotor j has angular velocity Ωj
and it produces thrust force Fj and drag moment Mj which
are given by

Fj = KfjΩ
2
j , (18)

Mj = KmjΩ
2
j , (19)

where Kfj and Kmj are the thrust and drag coefficients,
respectively.

T is the total thrust applied to the quadrotor from all four
rotors, and it is given by

T =

4∑
j=1

(Fj). (20)

Ta1 , Ta2 , and Ta3 are the three input moments about the three
body axes, xb, yb, zb, and they are given as

Ta1 = d(F4 − F2), (21)

Ta2 = d(F3 − F1), (22)

Ta3 = −M1 +M2 −M3 +M4. (23)

d is the distance between the quadrotor center of mass and
rotor rotational axis. Ω is given by

Ω = Ω1 − Ω2 + Ω3 − Ω4. (24)

Ir is the rotor inertia. If is the inertia matrix of the vehicle
around its body-frame assuming that the vehicle is symmetric
about xb−, yb− and zb−axis.

The dynamical model of the quadrotor-manipulator system
can be written as follows

M(q)q̈ + C(q, q̇)q̇ +G(q) + dex = Bu, (25)

where M ∈ R8×8 represents the symmetric and positive
definite inertia matrix of the combined system, C ∈ R8×8

is the matrix of Coriolis and centrifugal terms, G ∈ R8 is the
vector of gravity terms, dex ∈ R8 is vector of the external
disturbances, u = [F1 F2 F3 F4 τm1 τm2 ]T ∈ R6 is vector
of the actuator inputs, and B = H(q) N(Kfj ,Kmj , d) is the
input matrix which is used to generate the body forces and
moments from the actuator inputs. The control matrix, N , is
given by

N =



0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 0 0
γ1 −γ2 γ3 −γ4 0 0
−d 0 d 0 0 0
0 −d 0 d 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (26)

where γj = Kmj/Kfj , and H ∈ R8×8 is matrix that
transforms body input forces to be expressed in Σ and is given
by

H =

 Rb O3 O2

O3 TTb Rb O2

O2x3 O2x3 I2

 . (27)

From the equations of the translation dynamics part of
(12-14), one can extract the expressions of the second order
nonholonomic constraints as

sin(φ)− ẍfSψ − ÿfCψ√
ẍ2f + ÿ2f + z̈2f

= 0, (28)

tan(θ)− ẍfCψ + ÿfSψ
z̈f

= 0, (29)
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where ẍf = ẍ− Fm,qx
m , ÿf = ÿ− Fm,qy

m , and z̈f = z̈+g− Fm,qz
m .

It is to be noted that the force terms in the above
equations are also function of the system states and their
derivatives. Equations (28) and (29) can be solved for the
desired trajectories of φ and θ through substituting by the
desired trajectories of the other variables. These nonholonomic
constrains will be utilized later to solve the inverse kinematics
problem.

V. INVERSE KINEMATICS

A task for the quadrotor manipulation system is usually
specified in terms of a desired trajectory for the end-effector
position, pe,r(t), and orientation, Φe,r(t). In this section, six
algebraic kinematic equations relating χe with q are derived.

However, to find the eight variables of q from the given
six variables of χe, we need additional two equations. These
two equations are the nonholonomic constraints (28 and 29)
which are differential equations. We solve these eight equation
symbolically and reduce them to two differential equations in
σb. It is found that the exact solution of them has very high
computation cost which prevents its practical implementation.

For the desired task space trajectories, we assume:

Assumption 2. The desired trajectories for the end-effector
are bounded.

Thus, we propose an algorithm to get an approximate
solution to these eight algebraic/differential equations, see Fig.
4, as follows:

1) Specify the desired 6-DOF trajectory in the task space,
χe,r(t).

2) Put i = 1, t1 = 0, and ∆t = very small positive number
(1 ms).

3) Put σb(t0) = σ̇b(t0) = σ̈b(t0) = [0 0]T

4) At time ti, obtain the values of χe,r(ti) and put σb(ti) =
σb(ti−1), σ̇b(ti) = σ̇b(ti−1), and σ̈b(ti) = σ̈b(ti−1) .

5) Use the six inverse kinematics algebraic equations and
get the unknowns ζr(ti), ζ̇r(ti), ζ̈r(ti) which with σb(ti),
σ̇b(ti), and σ̈b(ti) constitute q(ti), q̇(ti), and q̈(ti).

6) In the equations of the nonholonomic constraints, we
separate sin(φ) and tan(θ) in one side (left side) and
the other terms in the other side (right side).

7) We substitute by q(ti), q̇(ti), q̈(ti) values in the right
hand side of the nonholonomic constraints obtained from
step 6, and obtain the new σb(ti) from left hand side and
by numerical differentiation, one can get the new σ̇b(ti)
and σ̈b(ti).

8) Put i = i + 1, ti = ti−1 + ∆t, and repeat steps 4 to
8 to obtain the reference trajectories of the controlled
variables, ζr(ti).

The validation of this algorithm will be checked at the end of
this section. The six algebraic inverse kinematic equations are
derived next.

Define the general form for the rotation matrix Re as a
function of end-effector variables χe, as

Re =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 . (30)

Equating (3) and (30), an expression for the elements of Re,
rij ; i, j = 1, 2, 3, can be found. According to the structure of
Re from (3), the inverse orientation is carried out first followed
by inverse position. The inverse orientation has three cases
based on the value of θ1 which can be calculated from the
element r33 as

CφCθCθ − SφCθSθ1 = r33. (31)

By rearranging (31) and solving the resulting equation for θ1,
then

θ1 = 2 arctan

(
−2b1 ±

√
(2b1)2 − 4(−a1 − r33)(a1 − r33)

2(−a1 − r33)

)
,

(32)
where a1 = CφCθ and b1 = −SφCθ.

The three cases are derived as follows:
CASE 1: θ1 6= 0 and θ1 6= π
Inspecting r13 and r23, one can find value of ψ as

r13 = a2Sψ + b2Cψ, (33)

r23 = c2Sψ + d2Cψ, (34)

where a2 = CφSθ1 + SφCθ1 , b2 = CφSθCθ1 − SφSθSθ1 ,
c2 = b2, and d2 = −a2.

Solving (33) and (34), will give

Sψ =
r23b2 − r13d2
−d2a2 + b2c2

, (35)

Cψ =
r23a2 − r13c2
d2a2 − b2c2

, (36)

ψ = atan2(Sψ, Cψ). (37)

By inspecting r32 and r31, θ2 can be found as

r32 = a3Sθ2 + b3Cθ2 , (38)

r31 = c3Sθ2 + d3Cθ2 , (39)

where a3 = CφCθSθ1 +CθSφCθ1 , b3 = −Sθ, c3 = b3, and
d3 = −a3.

Solving (38) and (39), then

Sθ2 =
r31b3 − r32d3
−d3a3 + b3c3

, (40)

Cθ2 =
r31a3 − r32c3
d3a3 − b3c3

, (41)

θ2 = atan2(Sθ2 , Cθ2). (42)

CASE 2: θ1 = 0
If θ1 = 0, then the sum θ2 + ψ can be determined. One

can assume any value for ψ and get θ2. Therefor, there are
infinity of solutions. By putting ψ = 0, the value of θ2 can be
determined as follows

Inspecting r11 and r12, θ2 can be found as

r11 = a4Sθ2 + b4Cθ2 , (43)

r12 = c4Sθ2 + d4Cθ2 , (44)
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where a4 = Cθ, b4 = −SφSθ, c4 = −b4, and d4 = a4.
Solving (43) and (44), then

Sθ2 =
r12b4 − r11d4
−d4a4 + b4c4

, (45)

Cθ2 =
r12a4 − r11c4
d4a4 − b4c4

, (46)

θ2 = atan2(Sθ2 , Cθ2). (47)

CASE 3: θ1 = π
Since Sθ1 = 0, this is similar to case 2. However, θ2 − ψ

can be determined and by choosing ψ = 0, an expression for
θ2 can be determined as follows:

Inspecting r11 and r12, θ2 can be found as

r11 = a5Sθ2 + b5Cθ2 , (48)

r12 = c5Sθ2 + d5Cθ2 , (49)

where a5 = a4, b5 = −b4, c5 = −b5, and d5 = a5.
Solving (48) and (49), then

Sθ2 =
r12b5 − r11d5
−d5a5 + b5c5

, (50)

Cθ2 =
r12a5 − r11c5
d5a5 − b5c5

, (51)

θ2 = atan2(Sθ2 , Cθ2). (52)

As shown above, there are four possible solutions for the
rotational inverse kinematics problem provided that we put
ψ = 0 in case 2 and 3. When we start applying the above
described algorithm in real time, we select the solution of θ1
which coincide with the given configuration of the quadrotor
manipulation system. After that, we continue with the one of
the four solutions which produces this θ1.

Finally, the inverse position is determined from (2) as

pb = pe −Rbpbeb. (53)

To validate the proposed approximate solution of the inverse
kinematics, the desired task space trajectories are chosen to
make a circular helix in position and quintic polynomial [17]
for the orientation.

After obtaining the joint space variables from the proposed
algorithm, as shown in Fig. 4, we apply the forward kinematics
to find the actual task space trajectory.

The comparison between the actual and desired task space
trajectories is shown in Fig. 5a from which one can recognize
that the actual and desired trajectories are coincided. In Fig.
5b, another case study is investigated to show the capability
of the proposed algorithm to deal with higher speed desired
trajectories. In this study, the desired trajectories are chosen to
be faster than that in Fig. 5a by ten times. These figures show
that the actual and desired trajectories are coincided under
both slower or faster trajectories, which ensures the validity
of the proposed inverse kinematic algorithm, and proves that
the proposed system has the ability to track arbitrary 6-DOF
task space trajectory. With this result in mind, we propose
a control algorithm in the next section to track the desired
6-DOF trajectories in the task space.

Figure 4: Verification of the inverse kinematic algorithm:
Block diagram
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Figure 5: Verification of the inverse kinematic algorithm: End-
effector 3D trajectory

VI. CONTROL DESIGN

A. Control Objectives

We target the design of the controller output, τ , in order to
satisfy the following objectives:

Control Objective 1. (Robust Stability) The considered
robotic system is stable and robust in the presence of the
external disturbances and noises.

Control Objective 2. Minimizing the error of the 6-DOF task
space trajectory tracking.

To achieve these control objectives, we utilize a control
technique based on both the Disturbance Observer (DOb)
method and the above inverse kinematics analysis.

B. DOb-based Controller

DOb-based controller is one of the most popular methods
in the field of robust motion control due to its simplicity and
computational efficiency. The authors in [22], [23] present the
principles of DOb-based control system. In DOb-based robust
motion control systems, internal and external disturbances
are observed by DOb, and the robustness is simply achieved
by feeding-back the estimated disturbances in an inner-
loop. Another controller is designed in an outer loop so
that the performance goals are achieved without considering
internal and external disturbances. In [24]–[26], DOb-based
control technique has been applied to robotic systems and
showed efficient performance. The stability analysis of DOb is
investigated in [27], [28], which show that the system stability
is guaranteed with the DOb-based control.
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A block diagram of the DOb controller is shown in Fig.
6 (The plant dynamics are highlighted by yellow box, while
the DOb loop is highlighted by green box) for robotic system
which will be utilized later to design robust control for the
proposed system. It is well known that the linear accelerations
and angular rates vehicle can be measured directly from the
Inertial Measurement Unit (IMU). In addition, the angular
velocities of the joints can be measured via an encoder.
Therefore, two different DOb loops are used. One is based
on the measured acceleration, while the other is based on the
measured velocity.

In this figure, Mn =

[
Mna O3×5

O5×3 Mnv

]
∈ R8×8 is the

system nominal inertia matrix with Mna ∈ R3×3 represents
the nominal inertia for the translational coordinates, pb, while
Mnv ∈ R5×5 represents the nominal inertia for the rotational
coordinates, Φb and Θ. τ and τdes are the robot and desired
inputs, respectively. Q(s) = diag([ g1

s+g1
... gi

s+gi
... g8

s+g8
])

∈ R8×8 is the matrix of the low pass filter of DOb, Qa(s) =
diag([ g1

s+g1
... g3

s+g3
]), and Qv(s) = diag([ g4

s+g4
... g8

s+g8
]).

P = diag([g1 ... gi ... g8]) with gi is the bandwidth of
the ith variable of q, and Pv = diag([g4 ... gi ... g8])
for the velocity part. τdis represents the system disturbances
including the Coriolis, centrifugal and gravitational terms.
τ̂dis = [τ̂dis

T

a τ̂dis
T

v ]T (collected by the block called Mux,
like multiplexer symbol in MATLAB) represents the system
estimated disturbances.

If we apply the concept of disturbance observer to the
proposed system, then the independent coordinate control
is possible without considering coupling effect of other
coordinates. The coupling terms such as centripetal and
Coriolis and gravity terms are considered as disturbance and
compensated by feed forward the estimated disturbance torque.

The system disturbance, τdis, can be assumed as

τdis = (M(q)−Mn)q̈ + τd,

τd = C(q, q̇)q̇ +G(q) + dex.
(54)

The control input, τ , in Fig. 6 can be calculated as

τ = Mnq̈
des + τ̂dis, (55)

where
τ̂dis = Q(τ −Mnq̈), (56)

and the outer loop controller

q̈des = q̈r +KP (qr − q) +KD(q̇r − q̇), (57)

where KP and KD ∈ R8×8 are the proportional and derivative
gains of the PD controller, receptively. qr, q̇r, and q̈r are
the references for linear/angular positions, velocities, and
accelerations, respectively. By proper selection of KP and
KD, one can tune the response of the the error dynamics as
necessary. Thus, the control input, τ , can be calculated as

τ = Mnq̈
des +Kvev, (58)

where Kv = PMn = kvI8, and ev = q̇des − q̇ with q̇des is
the integration of q̈des that is the output from the outer loop
controller.

Fig. 7 presents a block diagram of the proposed motion
control system based on the inverse kinematics analysis and
on quadrotor/joint space-based control. The desired trajectories
for the end-effector’s position and orientation χe,r (pe,r(t) and
Φe,r(t)) are fed to the inverse kinematics algorithm together
with σb,r(t) from a simplified version of the nonholonomic
constraints such that the desired vehicle/joint space trajectories
ζr(t) are obtained. After that, the controller block receives the
desired trajectories and the feedback signals from the system
and provides the control signal, τ = Bu.

Since the position and the yaw angle are usually the
controlled variables while pitch and roll angles are used as
intermediate control inputs for horizontal positions control,
the proposed control system consists from two DOb-based
controllers; one for ζ (with Kζ(s), Mna , Mnv1 ,Pv1 , Qv1 ,
and Qa) and the other for σb (with Kσ(s), Mnv2 , Pv2 , Qv2 ).

The desired values σb,r for the intermediate controller are
obtained from the output of position controller, τζ , through
the relation

σb,r =
1

τζ(3)

[
Cψ Sψ
Sψ −Cψ

] [
τζ(1)
τζ(2)

]
, (59)

which can be derived from (1) based on small angle
approximation.

The desired value of the pitching and rolling, σb,r, is then
fed back to the inverse kinematics algorithm.

The output of the two controllers, τζ and τσ , are mixed to
generate the final control vector τ which is converted to the
forces/torques applied to quadrotor/manipulator by

u = B−1
6

τζ(3, 4)
τσ

τζ(5, 6)

 , (60)

where B6 ∈ R6×6 is part of B matrix and it is given by
B6 = B(3 : 8, 1 : 6).

Theorem 1. Consider the control system shown in Fig. 7, and
described in (25, 55, and 57) with Assumptions 1−2. Then,
as long as the following conditions; Kv > 0, KP > 0, and
KD > 0, are satisfied, the system is Lp input/output stable
with respect to the pair (δ,ev), and e ∈ Lp and ė ∈ Lp for all
p ∈ [1,∞) such that

‖ev‖p ≤
1

γ
+

√
2

λmin
(

2

pγ
)

1
p

√
V (0, ev(0))‖δ‖p . (61)

Proof. By substituting from the control law (58 and 57) into
the system dynamics equation (25), one can get the following
error dynamics

M(q)ėv + C(q, q̇)ev +Kvev = δ, (62)

and
ė+KDe+KP

∫
e dt = ev, (63)

where

δ = ∆M(q)q̈des + C(q, q̇)q̇des +G(q) + dex, (64)

and ∆M(q) = M(q)−Mn. Assume the following Lyapunov
function

V =
1

2
eTvM(q)ev. (65)
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Figure 6: Block diagram of DOb-base controller

Figure 7: Detailed block diagram of the control system

The time derivative of this function is

V̇ = eTvM(q)ėv +
1

2
eTv Ṁ(q)ev. (66)

Substituting from (62), then (66) becomes

V̇ = eTv δ − eTvKvev +
1

2
eTv (Ṁ(q)− 2C(q, q̇))ev. (67)

The dynamic equation of motion (25) posses several well
known properties [17], [29].

Property 1.

λmin‖ν‖2 ≤ νTM(q)ν ≤ λmax‖ν‖2 (68)

Property 2.

νT (Ṁ(q)− 2C(q, q̇))ν = 0 (69)

where Ṁ(q)−2C(q, q̇) is a skew-symmetric matrix, ν ∈ R8

represents a 8-dimensional vector, and λmin and λmax are
positive real constants. Substituting from (69) into (67), then
(67) will be

V̇ = eTv δ − eTvKvev. (70)
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From the robot dynamic property (68), one can find

V̇ ≤ −γV +

√
2V

λmin
|δ|, (71)

where γ = 2kv
λmax

. From the analysis presented in [30], [31], we
complete the proof as following. Dividing (71) by V 0.5 6= 0
will give

d

dt
(V 0.5) + 0.5γV 0.5 ≤

√
2

λmin
|δ|, (72)

By multiplying (72) by e−0.5γ and integrating, then we get

V 0.5 ≤ e−0.5γtV 0.5(0, ev(0)) + Vc, (73)

with

Vc =
1√

2λmin

∫ t

0

e−0.5γ(t−ι)|δ(ι)|dι (74)

We can rewrite Vc as

Vc =
1√

2λmin
(e−0.5γt ∗ |δ(t)|) (75)

Taking the ‖.‖p, gives

‖Vc‖p =
1√

2λmin

∥∥∥e−0.5γt ∗ ‖δ(t)|
∥∥∥
p

(76)

From Lemma 3 in [31], then (76) is

‖Vc‖p =
1√

2λmin

∥∥∥e−0.5γt
∥∥∥
1

∥∥δ(t)∥∥
p

(77)

but
∥∥e−0.5γt

∥∥
1

= 0.5γ, so

‖Vc‖p = 0.5γ
1√

2λmin

∥∥δ(t)∥∥
p

(78)

Thus (73) is∥∥∥V 0.5
∥∥∥
p
≤
∥∥∥e−0.5γtV 0.5(0, ev(0))

∥∥∥
p

+0.5γ
1√

2λmin

∥∥δ(t)∥∥
p
,

(79)
This expression (79) can be simplified to reach (61)

Lemma 1. ( [32]) Let

e = HPD(s)ev (80)

where HPD(s) is an strictly proper and exponentially stable
transfer function. Then ev ∈ Lp implies that e ∈ Lp and
ė ∈ Lp.

Form (63), the transfer function between e and ev is proper
exponentially stable as long as the parameters KP and KD are
positive definite matrices. Thus, Lemma 1 implies that both e
and ė ∈ Lp.

Remark 1. Equation (71) indicates that the convergence rate
increases proportionally with Kv . However, we have to take
into considerations the constraints on gi due to the sampling
time.
Remark 2. It is noted from the quadrotor dynamics [33]–
[35] that the response of the intermediate, σ, controller must
be faster than that of the position control loop. However, as
stated in the above analysis, the convergence rate of errors
dynamics (ev and e) is directly proportional to the Kv , KP ,
KD. Therefore, we have to tune Kv , KP , and KD, such that
the response speed of σb is much faster than that of ζ.

VII. SIMULATION STUDY

In this section, the previously proposed control strategy
is simulated in MATLAB/SIMULINK program for the
considered aerial manipulation system.

A. Simulation Environment

In order to make the simulation quite realistic, the following
setup and assumptions have been made:

• The model has been identified on the basis of real data
through experimental tests. The identified parameters are
given in Table I.

• Linear and angular position and velocity of the quadrotor
are available at rate of 1 KHz.

• The position and velocity of the manipulator joints are
available at rate of 1 KHz.

• A normally distributed measurement noise, with mean of
10−3 and standard deviation of 5×10−3, has been added
to the measured signals.

• The controller outputs are computed at a rate of 1 KHz.
• In order to test the robustness to the model uncertainties,

a step disturbance is introduced, at instant 15 s, in the
control matrix, N , (Actuators’ losses), whose elements
are assumed to be equal to 0.9 times their true values
(i.e., 10% error).

• The end-effector has to pick a payload of value 200 g at
instant 20 s and release it at 40 s.

Table I: System Parameters

Par. Value Unit Par. Value Unit

m 1 kg L2 85× 10−3 m

d 223.5× 10−3 m m0 30× 10−3 kg

Ix 13.215× 10−3 N.m.s2 m1 55× 10−3 kg

Iy 12.522× 10−3 N.m.s2 m2 112× 10−3 kg

Iz 23.527× 10−3 N.m.s2 Ir 33.216× 10−6 N.m.s2

L0 30× 10−3 m L1 70× 10−3 m

KF1
1.667× 10−5 kg.m.rad−2 KF2

1.285× 10−5 kg.m.rad−2

KF3
1.711× 10−5 kg.m.rad−2 KF4

1.556× 10−5 kg.m.rad−2

KM1 3.965× 10−7 kg.m2.rad−2 KM2 2.847× 10−7 kg.m2.rad−2

KM3
4.404× 10−7 kg.m2.rad−2 KM4

3.170× 10−7 kg.m2.rad−2

B. Results and Discussion

Tables II presents the controller parameter for the proposed
control technique. Tuning of the controller parameters is
carried out to maximize the speed of system response and
minimize the tracking error. The reference trajectories for the
end-effector are chosen such that the end-effector moves on
a circular helix, while its orientation is fixed in a case and
follows quintic polynomial trajectories in another case.

The simulation results are presented in Figs. 8 and 9.
From these figures, it is possible to recognize that there are
small oscillations after starting the system operation due to
the time need to estimate the nonlinearities and disturbances.
This time is about 4 s. After that period, the controller can
quickly recover this error and provides good tracking of the
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desired trajectories. Moreover, it is clear that the capability
of the controller to recover, with fast response (about 1 s),
the tracking error due to the presence of the payload and
the uncertainty in system parameters. Furthermore, Fig. 10
indicates that the required actuators efforts, which are the
required thrust force from each rotor and the torque from
each manipulator’s motor, u, are in the allowable limit. the
maximum thrust force for each rotor is 6 N as obtained from
the identification process, while the allowable input torque for
the motor of joint 1 is 0.7 N.m and 0.4 N.m for that of joint 2
as stated in the motors’ data sheet. Therefore, one can contend
that the control objectives are achieved by using this motion
control scheme.

Table II: DOb based controller parameters

Par. Value Par. Value

Mnζ diag{2, 2, 2, 0.5, 0.5, 0.5} Mnσ diag{0.5, 0.5}
KPζ diag{3, 3, 10, 3, 3, 3} KPσ diag{10, 10}
KDζ diag{1.5, 1.5, 5, 3, 3, 3} KDσ diag{7, 7}
P [10 10 10 100 100 100 100 100]T

VIII. CONCLUSION

A new 6-DOF quadrotor-based aerial manipulator with
minimum number of actuators is investigated. It provides
solutions to the limitations found on the currently developed
aerial manipulation systems by having maximum mobility
with minimum weight. Description and design of the proposed
system are introduced. Mathematical modeling are carried out.
Proof that this system can perform any desired end-effector
trajectory is done through analysis and numerical simulation
of the complex inverse kinematics with nonholonomic
constraints. A robust motion control scheme is designed and
tested based on both the proposed inverse kinematics and the
DOb technique in order to achieve 6-DOb task space trajectory
tracking. Stability of the controller is analyzed. Simulation
results enlighten the feasibility of the proposed system and the
efficiency of the motion control scheme. As a future work, the
proposed system will be tested experimentally.
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